CuWO4 is an n-type oxide semiconductor with a bandgap of 2.2 eV which exhibits great potential for photoelectrochemical (PEC) conversion of solar energy into chemical fuels.
In this correspondence, a new photonic crystal fiber biosensor structure on the basis of surface plasmon resonance is proposed for the measurement of the refractive index (RI) and TSM temperature simultaneously. In this design, the central and external surface of the biosensor structure are coated with thin gold film. A hole adjacent to the inner gold film is filled with temperature-sensitive material (TSM). With the implementation of internal and external gold coatings along with TSM, the biosensor achieves the measurement of the RI and temperature with two disjoint wavelength coverage. Numerical simulations and calculation results illustrate that the average wavelength sensitivity of the biosensor structure, respectively, achieves 7080 nm/RIU and 3.36 nm/°C with RI coverage from 1.36 to 1.41 and temperature coverage from 0 to 60 °C. Moreover, benefiting from realization of different wavelength regions in RI and temperature sensing, it is believed that the proposed biosensor structure for the measurement of the RI and temperature will have range applications in the fields of medical diagnostics and environmental assessments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.