We present observations of 12C32S, 12C34S, 13C32S, and 12C33S J = 2−1 lines toward a large sample of massive star-forming regions by using the Arizona Radio Observatory 12 m telescope and the IRAM 30 m. Taking new measurements of the carbon 12C/13C ratio, the 32S/34S isotope ratio was determined from the integrated 13C32S/12C34S line intensity ratios for our sample. Our analysis shows a 32S/34S gradient from the inner Galaxy out to a galactocentric distance of 12 kpc. An unweighted least-squares fit to our data yields 32S/34S = (1.56 ± 0.17)D GC + (6.75 ± 1.22) with a correlation coefficient of 0.77. Errors represent 1σ standard deviations. Testing this result by (a) excluding the Galactic center region, (b) excluding all sources with C34S opacities >0.25, (c) combining our data and old data from previous study, and (d) using different sets of carbon isotope ratios leads to the conclusion that the observed 32S/34S gradient is not an artifact but persists irrespective of the choice of sample and carbon isotope data. A gradient with rising 32S/34S values as a function of galactocentric radius implies that the solar system ratio should be larger than that of the local interstellar medium. With the new carbon isotope ratios, we indeed obtain a local 32S/34S isotope ratio about 10% below the solar system one, as expected in the case of decreasing 32S/34S ratios with time and increased amounts of stellar processing. However, taking older carbon isotope ratios based on a lesser amount of data, such a decrease is not seen. No systematic variation of 34S/33S ratios along galactocentric distance was found. The average value is 5.9 ± 1.5, the error denoting the standard deviation of an individual measurement.
Our aim is to measure the interstellar 14N/15N ratio across the Galaxy, to establish a standard data set on interstellar ammonia isotope ratios, and to provide new constraints on the Galactic chemical evolution. The (J, K) = (1, 1), (2, 2), and (3, 3) lines of 14NH3 and 15NH3 were observed with the Shanghai Tianma 65 m radio telescope (TMRT) and the Effelsberg 100 m telescope toward a large sample of 210 sources. One hundred fourty-one of these sources were detected by the TMRT in 14NH3. Eight of them were also detected in 15NH3. For 10 of the 36 sources with strong NH3 emission, the Effelsberg 100 m telescope successfully detected their 15NH3(1, 1) lines, including 3 sources (G081.7522, W51D, and Orion-KL) with detections by the TMRT telescope. Thus, a total of 15 sources are detected in both the 14NH3 and 15NH3 lines. Line and physical parameters for these 15 sources are derived, including optical depths, rotation and kinetic temperatures, and total column densities. 14N/15N isotope ratios were determined from the 14NH3/15NH3 abundance ratios. The isotope ratios obtained from both telescopes agree for a given source within the uncertainties, and no dependence on heliocentric distance and kinetic temperature is seen. 14N/15N ratios tend to increase with galactocentric distance, confirming a radial nitrogen isotope gradient. This is consistent with results from recent Galactic chemical model calculations, including the impact of superasymptotic giant branch stars and novae.
To investigate the relative amount of ejecta from high-mass versus intermediate-mass stars and to trace the chemical evolution of the Galaxy, we have performed with the IRAM 30 m and the SMT 10 m telescopes a systematic study of Galactic interstellar 18 O/ 17 O ratios toward a sample of 421 molecular clouds, covering a galactocentric distance range of ∼1 -22 kpc. The results presented in this paper are based on the J=2-1 transition and encompass 364 sources showing both C 18 O and C 17 O detections. The previously suggested 18 O/ 17 O gradient is confirmed. For the 41 sources detected with both facilities, good agreement is obtained. A correlation of 18 O/ 17 O ratios with heliocentric distance is not found, indicating that beam dilution and linear beam sizes are not relevant. For the subsample of IRAM 30 m high-mass star-forming regions with accurate parallax distances, an unweighted fit gives 18 O/ 17 O = (0.12 ± 0.02)R GC + (2.38 ± 0.13) with a correlation coefficient of R = 0.67. While the slope is consistent with our J=1-0 measurement, ratios are systematically lower. This should be caused by larger optical depths of C 18 O 2-1 lines, w.r.t the corresponding 1-0 transitions, which is supported by RADEX calculations and the fact that C 18 O/C 17 O is positively correlated with 13 CO/C 18 O. After considering optical depth effects with C 18 O J=2-1 reaching typically an optical depth of ∼0.5, corrected 18 O/ 17 O ratios from the J=1-0 and J=2-1 lines become consistent. A good numerical fit to the data is provided by the MWG-12 model, including both rotating stars and novae.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.