Study of the combined effects of strong electronic correlations with spin-orbit coupling (SOC) represents a central issue in quantum materials research. Predicting emergent properties represents a huge theoretical problem since the presence of SOC implies that the spin is not a good quantum number. Existing theories propose the emergence of a multitude of exotic quantum phases, distinguishable by either local point symmetry breaking or local spin expectation values, even in materials with simple cubic crystal structure such as Ba2NaOsO6. Experimental tests of these theories by local probes are highly sought for. Our local measurements designed to concurrently probe spin and orbital/lattice degrees of freedom of Ba2NaOsO6 provide such tests. Here we show that a canted ferromagnetic phase which is preceded by local point symmetry breaking is stabilized at low temperatures, as predicted by quantum theories involving multipolar spin interactions.
We present detailed calculations of the electric field gradient (EFG) using a point charge approximation in Ba2NaOsO6, a Mott insulator with strong spin-orbit interaction. Recent 23 Na nuclear magnetic resonance (NMR) measurements found that the onset of local point symmetry breaking, likely caused by the formation of quadrupolar order 1 , precedes the formation of long range magnetic order in this compound 2,3 . An extension of the static 23 Na NMR measurements as a function of the orientation of a 15 T applied magnetic field at 8 K in the magnetically ordered phase is reported. Broken local cubic symmetry induces a non-spherical electronic charge distribution around the Na site and thus finite EFG, affecting the NMR spectral shape. We combine the spectral analysis as a function of the orientation of the magnetic field with calculations of the EFG to determine the exact microscopic nature of the lattice distortions present in low temperature phases of this material. We establish that orthorhombic distortions, constrained along the cubic axes of the perovskite reference unit cell, of oxygen octahedra surrounding Na nuclei are present in the magnetic phase. Other common types of distortions often observed in oxide structures are considered as well.
We report 23 Na nuclear magnetic resonance (NMR) measurements of the Mott insulator with strong spin-orbit interaction Ba 2 NaOsO 6 as a function of temperature in different magnetic fields ranging from 7 T to 29 T. The measurements, intended to concurrently probe spin and orbital/lattice degrees of freedom, are an extension of our work at lower fields reported in [1]. We have identified clear quantitative NMR signatures that display the appearance of a canted ferromagnetic phase, which is preceded by local point symmetry breaking. We have compiled the field temperature phase diagram extending up to 29 T. We find that the broken local point symmetry phase extends over a wider temperature range as magnetic field increases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.