A new, computerized segmentation technique, in which magnetic resonance (MR) imaging produces accurate volumetric measurements of brain and cerebrospinal fluid (CSF) without the limitations of computed tomography, was used in a retrospective analysis of digitized T2-weighted MR images of 16 healthy elderly control subjects and 16 patients with Alzheimer dementia. Ventricular and extraventricular CSF was quantified, and the effects of aging were studied; in both groups, the atrophy measurement was used to correct metabolic values obtained with positron emission tomography. Patients with Alzheimer dementia had higher total CSF; extraventricular, total ventricular, and third ventricular CSF volumes (49%, 37%, 99%, and 74%, respectively); and 7% lower brain volumes than the control group. The patients also showed a more marked decline in brain volumes and a greater increase in CSF volumes with advancing age than the control group. They had a 25.0% increase in corrected whole-brain metabolic rates; the control group had only a 15.8% increase. The use of this technique may provide a basis for further studies of aging and dementia, including regional volume analysis.
Axial and sagittal magnetic resonance (MR) sections and contiguous sections of axial positron emission tomographic (PET) images obtained with fludeoxyglucose F-18 were used to evaluate a new method of registering three-dimensional images of the brain. The users specified the interhemispheric fissure plane in three dimensions for both the MR and PET data sets by specifying its endpoints within several axial sections. A transformation matrix aligning the interhemispheric fissure plane in MR and PET space was calculated and used to create one resectioned PET image on the resectioned PET image, and the user specified the remaining translations and rotation by moving the overlaid outline of the MR image. MR and PET data sets in four subjects were registered. The three-dimensional error on average was less than 3.8 mm and never exceeded 7.5 mm. Less than 1 hour per patient was required for registration. The method is accurate unless the interhemispheric fissure deviates significantly from a planar configuration. It does not need thin or contiguous MR sections and provides an estimate of the total registration error for every case.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.