Bile acids are important regulatory molecules that can activate specific nuclear receptors and cell signaling pathways in the liver and gastrointestinal tract. In the current study, the chronic bile fistula (CBF) rat model and primary rat hepatocytes (PRH) were used to study the regulation of gluconeogenic genes phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G-6-Pase) and the gene encoding short heterodimeric partner (SHP) by taurocholate (TCA). The intestinal infusion of TCA into the CBF rat rapidly (1 h) activated the AKT (∼9-fold) and ERK1/2 (3- to 5-fold) signaling pathways, downregulated (∼50%, 30 min) the mRNA levels of PEPCK and G-6-Pase, and induced (14-fold in 3 h) SHP mRNA. TCA rapidly (∼50%, 1–2 h) downregulated PEPCK and G-6-Pase mRNA levels in PRH. The downregulation of these genes by TCA was blocked by pretreatment of PRH with pertussis toxin (PTX). In PRH, TCA plus insulin showed a significantly stronger inhibition of glucose secretion/synthesis from lactate and pyruvate than either alone. The induction of SHP mRNA in PRH was strongly blocked by inhibition of PI3 kinase or PKCζ by specific chemical inhibitors or knockdown of PKCζ by siRNA encoded by a recombinant lentivirus. Activation of the insulin signaling pathway appears to be linked to the upregulation of farnesoid X receptor functional activity and SHP induction.
The study objective was to determine whether and to what extent sterol 27-hydroxylase, the initial step in the "acidic" pathway of bile acid biosynthesis, is regulated by bile acids. Rats were fed diets supplemented with cholestyramine (CT, 5%), cholate (CA, 1%), chenodeoxycholate (CDCA, 1%), or deoxycholate (DCA, 0.25%). When compared with paired controls, sterol 27-hydroxylase and cholesterol 7 alpha-hydroxylase specific activities increased after CT administration by 188 +/- 20% (P < 0.05) and 415 +/- 36% (P < 0.01), respectively. Similarly, mRNA levels increased by 159 +/- 14% (P < 0.05) and 311 +/- 106% (P < 0.05), respectively. Feeding CA, CDCA, or DCA decreased sterol 27-hydroxylase specific activity to 57 +/- 6, 61 +/- 8, and 74 +/- 8% of controls, respectively (P < 0.05). By comparison, the specific activity of cholesterol 7 alpha-hydroxylase decreased to 46 +/- 7 , 32 +/- 10, and 26 +/- 8% (P = 0.001). mRNA levels and transcriptional activities for sterol 27-hydroxylase and cholesterol 7 alpha-hydroxylase transcriptional activity were changed to the same extent as the specific activities after CT or bile acid feeding. We conclude that sterol 27-hydroxylase and cholesterol 7 alpha-hydroxylase are subject to negative feedback regulation by hydrophobic bile acids at the level of transcription. However, the responses of sterol 27-hydroxylase to manipulation of the bile acid pool are less prominent than those of cholesterol 7 alpha-hydroxylase. During the diurnal cycle the specific activities of sterol 27-hydroxylase and cholesterol 7 alpha-hydroxylase changed in tandem, suggesting that both may be under control of glucocorticoids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.