Recent thermomechanical modeling to calculate the stress field in industrially direct-chill (DC) castaluminum slabs has been successful, but lack of material data limits the accuracy of these calculations. Therefore, the constitutive behavior of three aluminum alloys (AA1050, AA3104, and AA5182) was determined in the as-cast condition using tensile tests at low strain rates and from room temperature to solidus temperature. The parameters of two constitutive equations, the extended Ludwik equation and a combination of the Sellars-Tegart equation with a hardening law, were determined. In order to study the effect of recovery, the constitutive behavior after prestraining at higher temperatures was also investigated. To evaluate the quantified constitutive equations, tensile tests were performed simulating the deformation and cooling history experienced by the material during casting. It is concluded that both constitutive equations perform well, but the combined hardening-Sellars-Tegart (HST) equation has temperature-independent parameters, which makes it easier to implement in a DC casting model. Further, the deformation history of the ingot should be taken into account for accurate stress calculations.
Summary
Phosphate-conversion coatings are widely used on (premium) casing connections for protection against corrosion. These coatings provide galling protection in conjunction with lubricant. The friction and wear that occur during makeup and subsequent load cycling strongly influence the sealing performance of the metal/metal seal. Therefore, phosphate-conversion coatings play an important role in the sealing performance of metal/metal seals. An extensive test program was set up to investigate the role of phosphate coatings during makeup and in the subsequent sealing of the metal/metal seal. With pin-on-disk, anvil-on-strip, and ring-on-ring tests, the interactions between the substrate, lubricant, and phosphate coating were investigated. A comparison was made between uncoated and coated specimens using base greases and formulated greases: API-modified lubricant and two commercially available yellow dopes. The results indicate a strong influence of the phosphate coating leading to damage-free makeup, low wear, and less dependence on the lubricant for optimal sealing ability. This is attributed to the formation of a hard and smooth dissimilar surface, the ability to adsorb the lubricant, and the generation of a transfer layer on the uncoated countersurface. It is concluded that taking the interaction with phosphates into account could enable lubricants to be tailored for sealing performance, and thus can ease the transition to environmentally friendly rated lubricants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.