High temperature‐induced grain sterility in rice is becoming a serious problem in tropical rice‐growing ecosystems. We studied the mechanism of high temperature‐induced grain sterility of different rice (Oryza sativa L) cultivars at two relative humidity (RH) levels. Four varieties of Indica and Japonica rice were exposed to over 85 % RH and 60 % RH at 36/30 °C, 34/30 °C, 32/24 °C and 30/24 °C day/night air temperatures from late booting to maturity inside sunlit phytotrons. Increasing both air temperature and RH significantly increased spikelet sterility while high temperature‐induced sterility decreased significantly with decreasing RH. Neither Indica nor Japonica rice types were superior to the other in the response of their spikelets to increased air temperature and RH. Increased spikelet sterility was due to increased pollen grain sterility which reduced deposition of viable pollen grains on stigma. Reduction in sterility with decreased RH was more due to decreased spikelet temperature than to air temperature. Thus the impact of RH should be considered when interpreting the effect of high temperature on grain sterility. Spikelet fertility was curvilinearly related to spikelet temperature. Grain sterility increased when spikelet temperature increased over 30 °C while it became completely sterile at 36 °C. The ability of a variety to decrease its spikelet temperature with decreasing RH could be considered as avoidance while the variability in spikelet sterility among varieties at a given spikelet temperature could be considered as true tolerance.
Rice (Oryza sativa L. cv. IR72) was grown in the tropics at ambient (345 μL L-1) or twice ambient (elevated, 700 μL L-1) CO2, concentration at three levels of supplemental nitrogen (N) (no additional N (N0), 90 kg ha-1 (N1) and 200 kg ha-1 (N2)) in open-top chambers under irrigated field conditions from seeding until flowering. The primary objective of the study was to determine if N supply alters the sensitivity of growth and photosynthesis of field-grown rice to enriched CO2. A second objective was to determine the influence of elevated CO2 on N uptake and tissue concentrations. Although photosynthesis was initially stimulated at the leaf and canopy level with elevated CO2 regardless of supplemental N supply, with time the photosynthetic response became highly dependent on the level of supplemental N, increasing proportionally as N availability increased. Similarly, a synergistic effect was noted between CO2 and N with respect to above-ground biomass with no effect of elevated CO2 observed for the No treatment. Most of the increase in above-ground biomass with increasing CO2 and N was associated with increased tiller and, to a lesser extent, root production. The concentration of above-ground N decreased at elevated CO2 regardless of N treatment; however, total above-ground N did not change for the N1 and N2 treatments because of the greater amount of biomass associated with elevated CO2. For rice, the photosynthetic and growth response to elevated CO2 may be highly dependent on the supply of N. If additional CO2 is given and N is not available, lack of sinks for excess carbon (e.g. tillers) may limit the photosynthetic and growth response.
Spikelet sterility in rice (Oryza sativa L.) induced by high temperatures is a major concern given global warming predictions. We studied differences among eight rice cultivars in spikelet fertility at five different temperature levels in temperature gradient chamber (TGC) experiments. Six japonica and two indica cultivars were exposed to high-temperature gradients in TGCs during the 2005 flowering season. Spikelet sterility increased with temperature in TGCs and differed among cultivars because of both variations in temperature tolerance and timing of heading. The correlation between spikelet fertility of individual panicles and both air temperature and panicle temperature during flowering was analyzed to compare tolerances among cultivars. The temperature (T 75 ) at which spikelet fertility was 75 % of maximum ranged from 34 to 39°C air temperature and differed significantly among cultivars. Indica varieties had higher T 75 values than japonica varieties. The T 75 values based on panicle temperature also differed among cultivars, but the difference between indica and japonica varieties were less significant. We concluded that the higher temperature tolerances of indica cultivars in our experiments could be attributed to lower spikelet temperatures, and cultivars with similar spikelet temperatures still had different heat tolerances due to differences in pollination ability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.