BACKGROUND Recent evidence suggests that atrioventricular junctional reentrant tachycardia (AVJRT) uses a reentrant circuit that involves the atrioventricular (AV) node, the atrionodal connections, and perinodal atrial tissue. Electrogram morphology has been used to target the delivery of radiofrequency energy to the site of the "slow pathway," a component of this reentrant circuit. The aim of this study was to localize precisely the sites of atrionodal connections involved in AVJRT and to examine atrial electrogram morphologies and their spatial distribution over Koch's triangle. METHODS AND RESULTS Electrical activation of Koch's triangle and the proximal coronary sinus was examined in 13 patients using a 60-point plaque electrode and computerized mapping system. Recordings were made during sinus rhythm (n = 12), left atrial pacing (n = 8), ventricular pacing (n = 12), and AVJRT (n = 12). During sinus rhythm electrical activation approached Koch's triangle and the AV node from the direction of the anterior limbus, activating the anterior part of the triangle before the posterior part. A zone of slow conduction during sinus rhythm was found within Koch's triangle in 64% of patients. The pattern of atrial activation in Koch's triangle during anterograde fast pathway conduction was similar to that seen during anterograde slow pathway conduction. Retrograde fast pathway conduction during ventricular pacing and during anterior (typical) AVJRT caused earliest atrial activation at the apex of Koch's triangle near the AV node-His bundle junction. In individual patients the site of earliest atrial activation was similar for both anterior AVJRT and retrograde fast pathway conduction during ventricular pacing. Retrograde slow pathway conduction during ventricular pacing and during posterior (uncommon or atypical) AVJRT caused earliest atrial activation posterior to the AV node near the orifice of the coronary sinus. This posterior or "slow pathway" exit site was 15 +/- 4 mm from the His bundle. In individual patients the site of earliest atrial activation was similar for both posterior AVJRT and retrograde slow pathway conduction during ventricular pacing. In one patient anterograde and retrograde conduction occurred via separate slow pathways during AVJRT: Complex atrial electrograms with two or more components were observed near the coronary sinus orifice and in the posterior part of Koch's triangle in all cases. These were categorized as either low or high frequency potentials according to the rapidity of the second component of the electrogram. Low frequency potentials were present at the site of earliest atrial excitation during retrograde slow pathway conduction in 5 of 5 cases (100%) and high frequency potentials in 4 of 5 cases (80%). However, both slow and high frequency potentials could be found at sites up to 16 mm from the site of earliest atrial excitation. CONCLUSIONS At least two distinct groups of atrionodal connections exist. The site of earliest atrial activation during anterior AVJRT is similar to that of fast pathway conduction during ventricular pacing. This site is close to the His bundle-AV node junction. The site of earliest atrial activation during posterior AVJRT is similar to that of slow pathway conduction during ventricular pacing. This site is near the coronary sinus orifice, approximately 15 mm from the His bundle. The anterograde slow pathway appears to be different from the retrograde slow pathway in some patients. Double atrial electrograms are an imprecise guide to the site of earliest atrial excitation during retrograde slow pathway conduction.
Although left ventricular outflow tract obstruction is commonly associated with congenitally corrected transposition of the great vessels, this obstruction is seldom caused by accessory mitral valve tissue. Three cases in which accessory mitral valve tissue caused left ventricular outflow tract obstruction in children are described. Two had congenitally corrected transposition and one had normally connected great vessels. The accessory leaflet tissue, which was identified by echocardiography and angiography, was attached by chordae tendineae to normally sited papillary muscles and herniated into the left ventricular outflow tract during systole. Operation was successful in these patients. The accessory valve tissue was excised via an arteriotomy in the great vessel that arose from the left ventricle. The obstructive tissue was excised close to its peripheral attachments in the outflow tract and its chordae tendineae were divided. Resection was performed without injury to the abnormally placed conduction system or to the normal valve structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.