The subduction of seamounts and ridge features at convergent plate boundaries plays an important role in the deformation of the overriding plate and influences geochemical cycling and associated biological processes. Active serpentinization of forearc mantle and serpentinite mud volcanism on the Mariana forearc (between the trench and active volcanic arc) provides windows on subduction processes. Here, we present (1) the first observation of an extensive exposure of an undeformed Cretaceous seamount currently being subducted at the Mariana Trench inner slope; (2) vertical deformation of the forearc region related to subduction of Pacific Plate seamounts and thickened crust; (3) recovered Ocean Drilling Program and International Ocean Discovery Program cores of serpentinite mudflows that confirm exhumation of various Pacific Plate lithologies, including subducted reef limestone; (4) petrologic, geochemical and paleontological data from the cores that show that Pacific Plate seamount exhumation covers greater spatial and temporal extents; (5) the inference that microbial communities associated with serpentinite mud volcanism may also be exhumed from the subducted plate seafloor and/or seamounts; and (6) the implications for effects of these processes with regard to evolution of life.This article is part of a discussion meeting issue ‘Serpentine in the Earth system’.
Circulation of water at moderate depths in subduction zones is dominantly driven by clay mineral dehydration over distinct pressure and temperature gradients. The signature of these dehydration reactions is found in mud volcano pore waters, however, it is largely unknown, how much of the deep‐seated fluids are emitted at mud volcanoes. To unravel this relation for the region off the Kii Peninsula, Japan, we calculated the water volume that is subducted in the Nankai Trough using input data from IODP holes C0011 and C0012 and the correspondent water volume released from the subducted plate under the Kumano Basin, in an area where 13 mud volcanoes are located. According to our model, water released at depth in the mud volcano area is derived almost entirely from basaltic saponite and sedimentary smectite transformation [up to 96%]. Nonetheless, the mud volcanoes themselves expel ≪1% of the total volume. To test the contribution of the accreted strata and the Kumano Basin fill to the water budget, we run a second model. Water loss due to compaction of sediments and smectite‐illite transition below the basin floor have been calculated. The results were compared with salinity measurements on background cores scattered in the study area to extrapolate the volume of water loss at depth. The comparison of the two methods yielded similar results and led us to conclude that the bulk part of the deep‐seated fluid reenters the hydrosphere via the basin floor, a mechanism rarely taken into account in fluid budgets in the literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.