Mechanisms of constitutive NF-kappaB signaling in multiple myeloma are unknown. An inhibitor of IkappaB kinase beta (IKKbeta) targeting the classical NF-kappaB pathway was lethal to many myeloma cell lines. Several cell lines had elevated expression of NIK due to genomic alterations or protein stabilization, while others had inactivating mutations of TRAF3; both kinds of abnormality triggered the classical and alternative NF-kappaB pathways. A majority of primary myeloma patient samples and cell lines had elevated NF-kappaB target gene expression, often associated with genetic or epigenetic alteration of NIK, TRAF3, CYLD, BIRC2/BIRC3, CD40, NFKB1, or NFKB2. These data demonstrate that addiction to the NF-kappaB pathway is frequent in myeloma and suggest that IKKbeta inhibitors hold promise for the treatment of this disease.
Myeloma is a malignant proliferation of monoclonal plasma cells. Although morphologically similar, several subtypes of the disease have been identified at the genetic and molecular level. These genetic subtypes are associated with unique clinicopathological features and dissimilar outcome. At the top hierarchical level, myeloma can be divided into hyperdiploid and non-hyperdiploid subtypes. The latter is mainly composed of cases harboring IgH translocations, generally associated with more aggressive clinical features and shorter survival. The three main IgH translocations in myeloma are the t(11;14)(q13;q32), t(4;14)(p16;q32) and t(14;16)(q32;q23). Trisomies and a more indolent form of the disease characterize hyperdiploid myeloma. A number of genetic progression factors have been identified including deletions of chromosomes 13 and 17 and abnormalities of chromosome 1 (1p deletion and 1q amplification). Other key drivers of cell survival and proliferation have also been identified such as nuclear factor-B-activating mutations and other deregulation factors for the cyclin-dependent pathways regulators. Further understanding of the biological subtypes of the disease has come from the application of novel techniques such as gene expression profiling and array-based comparative genomic hybridization. The combination of data arising from these studies and that previously elucidated through other mechanisms allows for most myeloma cases to be classified under one of several genetic subtypes. This paper proposes a framework for the classification of myeloma subtypes and provides recommendations for genetic testing. This group proposes that genetic testing needs to be incorporated into daily clinical practice and also as an essential component of all ongoing and future clinical trials.
Multiple myeloma is a neoplasm of terminally differentiated B cells (plasma cells) in which chromosome translocations frequently place oncogenes under the control of immunoglobulin enhancers. Unlike most haematopoietic cancers, multiple myeloma often has complex chromosomal abnormalities that are reminiscent of epithelial tumours. What causes full-blown myeloma? And can our molecular understanding of this common haematological malignancy be used to develop effective preventive and treatment strategies?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.