A general, self-consistent scheme for analyzing cellular electroporation for bio-medical applications is developed to probe realistic biological shapes and different length scales ranging from nanometers to hundreds of micrometers. The COMSOL Multiphysics suite is used with suitable embellishments to incorporate the details of the electroporation (EP) process and the inherent internal physics. The results are obtained for the voltage pulse driven electroporation for a Jurkat cell with mitochondria (as an example organelle) where spatial dimensions on the order of a few nanometers become important, to hundreds of cells (with Bacillus as an example) where collective effects and mutual interactions can dominate. Thus, scalable computing to generalized geometries with the ability to include complex organelles is made available. The results obtained for mitochondrial EP in Jurkat cells compare well with available data. In addition, quantitative predictions of field attenuation and shielding in Bacillus clusters are made, which point to highly nonuniform field distributions and a strong need to engineer novel electrode designs.
A new preconditioner based on a block LDU factorization with algebraic multigrid subsolves for scalability is introduced for the large, structured systems appearing in implicit Runge-Kutta time integration of parabolic partial differential equations. This preconditioner is compared in condition number and eigenvalue distribution, and in numerical experiments with others in the literature: block Jacobi, block Gauss-Seidel, and the optimized block Gauss-Seidel method of [5]. Experiments are run with implicit Runge-Kutta stages up to s = 7, and it is found that the new preconditioner outperforms the others, with the improvement becoming more pronounced as spatial discretization is refined and as temporal order is increased.
Evaluation of the photoresponse in wurtzite GaN photoconductive switches is presented based on kinetic Monte Carlo simulations. The focus is on electron transport physics and assessment of high frequency operation. The roles of GaN band structure, Pauli exclusion, and treatment of internal fields based on the fast multipole method are all comprehensively included. The implementation was validated through comparisons of velocity-field characteristics for GaN with computational results in the literature. Photocurrent widths of less than ∼7 ps for the 1 μm device can be expected, which translates into a 100 GHz upper bound. Photocurrent pulse compression below the laser full width at half maxima at high applied fields are predicted based on the interplay of space-charge effects and the negative differential velocity characteristics of GaN.
Multipactor mitigation is of relevance to microwave applications, and external magnetic fields, surface modifications, and materials engineering have previously been utilized for this purpose. In this contribution, geometric modifications made to rectangular waveguide surfaces in the form of nested grooves are investigated for the suppression of multipactor growth. A time-dependent kinetic scheme is used to simulate electron dynamics that folds in electron trapping at the nested groove structures, with inclusion of the electric field perturbations arising from the presence of various grooved geometries. The charge growth in the system is modeled based on an empirical approach that includes both energy and angular dependencies of secondary electron emission from all the different surfaces. A varying number of grooves, their widths, and their placement (either one sided or dual-sided) within the rectangular waveguide structure are included for a more complete analysis. The results demonstrate that nested grooves can lead to reductions in charge growth by over a factor of 280 when compared with a simple waveguide over the same time period. Furthermore, wider nested grooves are shown to have an advantage, with multiple aligned grooves across two parallel surfaces being especially useful at high external fields. Determining optimal combinations for an arbitrary field, operating frequency, and physical dimensions would require further work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.