When a young observer attempts to accommodate steadily on a fixed stimulus, the norminally steady‐state response shows small instabilities or fluctuations (sometimes termed microfluctuations or oscillations). These fluctuations typically have an amplitude of a few tenths of a dioptre and a frequency spectrum extending up to a few Hertz. The properties of these fluctuations are described for various viewing conditions: pupil diameter, target vergence, target form, target contrast, and target luminance all influence the frequency spectra of the oscillations, as may anomalies of vision such as amblyopia. The possible roles that the fluctuations might play in the function of the accommodative system are discussed. It is suggested that the higher frequency components around 2 Hz may arise from the mechanical and elastic characteristics of the lens, zonule and ciliary body. Components at lower frequencies (<0.5 Hz) may be of more significance in the function of the accommodative control system.
Current understanding of the anatomy, function and performance of the accommodative system of the young, adult human eye is outlined. Most major current models of the accommodative mechanism are based on Helmholtz's original ideas but, despite of a growing volume of related research, uncertainty continues over the relative contributions made to the overall mechanism by different ocular structures. The changes with age are then discussed. Although the amplitude of accommodation decreases steadily from later childhood, the speed and accuracy of the system within the available amplitude are little impaired until the age of about 40, when the amplitude falls below that needed for normal near work. A review of the available evidence on age-related change in the lens, capsule, ciliary body and other relevant ocular structures confirms that geometric and viscoelastic lenticular changes play major roles in the progressive loss of accommodation. Other factors may also contribute in an, as yet, unquantified way and a full understanding of the origins of presbyopic change remains elusive.
Purpose: To outline the refractive problems associated with presbyopia and to review the basis and relative merits of currently-available methods for their correction, with detailed consideration of spectacle and contact lens approaches. Contents: In the developed world, most of the present population will spend roughly half their lives as presbyopes. The well-known presbyopic changes with age in amplitude of accommodation and required near addition are briefly reviewed, together with the less widely acknowledged slow drifts that occur in distance refraction. The desirability of restoring to presbyopes clear vision for objects at any distance, ideally corresponding to vergences within the range of at least 0 to À5 D, in any viewing direction, is stressed. A general outline is given of possible corrective methods. Methods which satisfy the needs of a 50 year-old may not be suitable for the 80 year-old. Corrections may involve both fixed-and variablefocus lens systems, and surgical methods which modify the optics of the cornea, replace the crystalline lens with different fixed optics, or attempt to at least partially restore active accommodation. Some more recent methods of spectacle and contact lens correction are described in more detail. Particular attention is given to recent commercially-developed spectacles in which the corrective power can be varied actively by either mechanical (liquid-filled deformable lenses or Alvarez lenses) or electrical (liquid crystal lenses) means to allow objects at different distances to be seen clearly. Contact lens corrections show less progress and are still preferred only by a minority of older patients, most of whom are early presbyopes. Summary: The rising proportion of presbyopes in the population, covering an age span of around 40 years, represents both a problem for those concerned with giving their patients the best vision possible at both far and near viewing distances and a commercial opportunity. Traditional single-vision distance and near, bifocal, and progressive spectacle lens solutions, together with contact lens modalities for presbyopic correction, are being challenged by a variety of new approaches. It remains to be seen whether the latter will receive wide acceptance in practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.