Trypanothione reductase is an FAD-dependent disulfide oxidoreductase which catalyses the reduction of trypanothione using NADPH as co-factor. The enzyme is unique to protozoan parasites from the genera Trypanosoma and Leishmania and is an important target for the design of improved antitrypanocidal drugs. We present details of the structure of trypanothione reductase from Crithidia fasciculata solved by molecular replacement, using human glutathione reductase as a search model, and refined to an R factor of 16.1% with data between 8.0 and 2.6 A resolution. The model comprises two subunits (one containing 487 residues, the other 486), an FAD prosthetic group, plus 392 solvent molecules. The last four C-terminal residues are not seen in either subunit and the density is poor for the N-terminal residue of subunit B. The model has a root-mean-square deviation from ideality of 0.016 A for bond lengths and 3.2 degrees for bond angles. Each subunit was independently refined in the latter stages of the analysis but the subunits remain similar as indicated by the root-mean-square deviation of 0.35 A for C(alpha) atoms. Trypanothione reductase has 36% sequence identity with human glutathione reductase and the root-mean-square deviation between the 462 C(alpha) atoms in the secondary structural units common to the two proteins is 1.1 A. However, there are large differences in the loop regions and significant shifts in the orientation of the four domains within each subunit. Domain II, which binds the dinucleotide co-factor, and domain IV, which forms the interface between the two subunits, are both rotated by approximately 5 degrees with respect to domain I, which binds the FAD moiety, when compared with glutathione reductase. Crystals of trypanothione reductase have been soaked in the dinucleotide co-factor NADPH and N(1)-glutathionylspermidine disulfide substrate and the structure of the resulting complex determined at 2.8 A resolution. Strong density is observed for the adenosine end of the co-factor which forms many charged interactions with the protein though the density for the nicotinamide moiety is more diffuse. The mode of binding indicates that NADP is bound to the enzyme in a similar conformation to that observed with human glutathione reductase.
Soybean leghemoglobin a is a small (16 kDa) protein facilitating the transport of Oz to respiring N2-fixing bacteria at low free-O2 tension. The crystal structure of soybean ferric leghemoglobin a nicotinate has been refined at 2.3 A resolution. The final R factor is 15.8% for 6877 reflections between 6.0 and 2.3 ~. The structure of soybean leghemoglobin a (143 residues) is closely similar to that of lupin leghemoglobin II (153 residues), the proteins having 82 identical residues when the sequences are aligned. The new structure provides support for the conclusion that the unique properties of leghemoglobin arise principally from a heme pocket considerably larger and more flexible than that of myoglobin, a strongly ruffled heme group, and a proximal histidine orientation more favourable to ligand binding.
Edited by Richard CogdellThe enzyme glucose-6-phosphate dehydrogenase from Trypanosoma cruzi (TcG6PDH) catalyses the first step of the pentose phosphate pathway (PPP) and is considered a promising target for the discovery of a new drug against Chagas diseases. In the present work, we describe the crystal structure of TcG6PDH obtained in a ternary complex with the substrate b-D-glucose-6-phosphate (G6P) and the reduced 'catalytic' cofactor NADPH, which reveals the molecular basis of substrate and cofactor recognition. A comparison with the homologous human protein sheds light on differences in the cofactor-binding site that might be explored towards the design of new NADP + competitive inhibitors targeting the parasite enzyme.
The large quantity of genomic, biochemical and metabolic data on microbial pathogens provides information that helps us to select biological problems of interest and to identify targets, metabolic pathways or constituent enzymes, for therapeutic intervention. One area of potential use in developing novel anti-parasitic agents concerns the regulation of oxidative stress, and we have targeted the trypanothione peroxidase pathway in this respect. In order to characterize this pathway, we have determined crystal structures for each of its components, and are now studying enzyme-ligand complexes of the first enzyme, trypanothione reductase. Also with regard to trypanosomatids, a question that arose was: why do anti-folates not provide useful therapies? The enzyme pteridine reductase has been shown to contribute to anti-folate drug resistance, and we have determined the enzyme structure and mechanism to understand this aspect of drug resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.