Single rat epididymal cell studied under whole cell patch-clamp condition responded to 8-(4-chlorophenylthio)-adenosine 3',5'-cyclic monophosphate (CPT-cAMP) (500 microM) and to ionomycin (1 microM) by an increase in whole cell conductance. A major part of the stimulated current was carried by Cl-, although a small part was due to nonselective cation current. After elimination of the cation current component by using impermeant cation, the cells revealed different Cl- conductance properties in response to adenosine 3',5'-cyclic monophosphate (cAMP) and ionomycin. The cAMP-stimulated Cl- conductance was independent of time and voltage and showed a linear current-voltage relationship. The anion permselectivity was NO3- > Br- > Cl- approximately I- >> SO(4)2-. The ionomycin-stimulated Cl- conductance showed marked time and voltage dependency. In contrast to the cAMP-induced anion permselectivity, the ionomycin-induced anion permselectivity was I- > Br- approximately NO3- > Cl- >> SO(4)2-. These results indicate that the epididymal epithelial cells exhibit different Cl- conductances sensitive to cAMP and Ca2+. The cAMP-activated conductance has properties resembling the type associated with the cystic fibrosis transmembrane conductance regulator found in cystic fibrosis-affected epithelia. This finding supports the notion that the epididymis is a cystic fibrosis epithelium.
Swelling-induced Cl- conductance in cultured rat epididymal cells was characterized using whole cell patch-clamp techniques. Activation of whole cell current with an outwardly rectifying current-potential relationship was observed in cells exposed to hyposmotic solutions. This current was determined, from the observed current-reversal potentials at different Cl- concentrations, to be Cl- selective. The anion selectivity sequence of the swelling-induced Cl- conductance was I- approximately NO3- approximately Br- > Cl- > 2-(N-morpholino)ethanesulfonic acid. The swelling-induced Cl- conductance was reversibly inhibited by different Cl- channel blockers. Unlike diphenylamine-2-carboxylate or 5-nitro-2-(3-phenylpropylamino)-benzoate, which showed voltage-independent blockade, 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid showed a marked voltage-dependent blockade of the volume-sensitive Cl- current, with a greater effect at depolarizing voltages. The swelling-induced Cl- conductance appeared to be different from the Ca(2+)- or adenosine 3',5'-cyclic monophosphate-activated Cl- conductances on the basis of the following observations: 1) swelling-induced current activation was seen even in the presence of kinase inhibitor (H-8) or absence of external free Ca2+, and 2) further increase in current activation could be produced by swelling after Ca(2+)- or adenosine 3',5'-cyclic monophosphate-induced current activation. The swelling-induced Cl- conductance may be involved in regulating epithelial cell volume as well as serving other important epididymal functions such as facilitating transepithelial secretion of organic compounds.
A primary culture of mouse endometrial epithelium grown on permeable supports was established and the electrogenic ion transport across the endometrial epithelium was studied using the short-circuit current (I(SC)) technique. Enzymatically isolated mouse endometrial cells were immunostained with epithelial cells markers, cytokeratins, indicating an epithelial origin of the culture. Mouse endometrial epithelial cells grown on Millipore filters formed polarized monolayers with junctional complexes as revealed by light and electron microscopy. The cultured monolayers exhibited an average basal I(SC) of 4.6 +/- 0.3 microA/cm2, transepithelial voltage of 2.7 +/- 0.2 mV and transepithelial resistance of 599 +/- 30 omega cm2. The basal current was reduced by 85% in Na+-free solution and 13% in Cl(-)-free solution. The basal current could also be substantially (57.7%) blocked by an apical Na+ channel blocker, amiloride (10 microM), suggesting that Na+ absorption largely contributed to the basal current. Apical addition of Cl- channel blocker, DPC (2 mM), also exhibited an inhibitory effect, 19.4%, on the basal I(SC), indicating minor involvement of Cl- secretion as compared to that of Na+ absorption. The cultured endometrial epithelium also responded to a number of secretagogues including adrenaline and forskolin with increases in the I(SC), which could involve substantial Cl- secretion. The present study has established a culture of mouse endometrial epithelium exhibiting predominantly Na+ absorption under unstimulated condition, and Cl- secretion in response to various secretagogues. This culture may be useful for studying various regulatory mechanisms of electrogenic ion transport across the endometrial epithelium.
Electrogenic chloride and bicarbonate secretion by cultured rat epididymal epithelia was studied using the short‐circuit current (ISC) technique. When incubated in normal solution, 8‐(4‐chlorophenylthio)‐adenosine 3',5'‐cyclic monophosphate (cpt‐cAMP) caused a rise in the ISC, which was attributable to Cl‐ and HCO3‐ secretion. Cl‐ secretion was found to contribute to the initial transient phase, whereas HCO3‐ secretion contributed to the sustained phase of the response. HCO3‐ secretion involves a basolaterally placed Na(+)‐H+ exchanger and apical anion channel, most probably the cystic fibrosis transmembrane conductance regulator (CFTR). There is also evidence that an apical electrogenic Na(+)‐HCO3‐ cotransporter is involved in HCO3‐ exit. CFTR accounted for 70% of HCO3‐ secretion, while the Na(+)‐HCO3‐ cotransporter accounted for 30%. The possibility that the cotransporter may serve as an alternative pathway for HCO3‐ secretion in cystic fibrosis is discussed.
Confluent monolayers cultured from the rat cauda epididymidis have been shown to respond to angiotensin I (AI) and angiotensin II (AII) when studied under short-circuit conditions and bathed on both sides with Krebs-Henseleit solution. Both the decapeptide AI and the octapeptide AII elicited transient increases in short-circuit current (SCC) when added to the basolateral as well as to the apical surfaces, with the effect of basolateral application greater than that of apical application. The maximal responses produced by AI and AII were similar with median effective concentrations of 20 to 80 nmol/l. The increase in SCC by AII was dependent upon extracellular Cl- and was inhibited by addition of a Cl- channel blocker, diphenylamine 2-carboxylate, to the apical surface. These patterns of activity suggest that the SCC responses to angiotensins result from electrogenic chloride secretion. Pretreating the monolayers with captopril (100 nmol/l), an angiotensin-converting enzyme (ACE) inhibitor, reduced the response to basolateral application of AI, but completely abolished the response to AI added apically. These results suggest that the response to apical addition of AI was due to conversion of AI to AII which interacts with apical angiotensin receptors. This conversion was mediated by ACE which has been detected in epididymal monolayers. Of the endogenous ACE activity, 86% was found to be inhibited by captopril (100 nmol/l). Responses of the epididymal monolayers to angiotensins were mediated by specific angiotensin receptors. [Sar1,Ile8]-AII, a specific antagonist of the AII receptor, completely inhibited the responses to AI and AII but had no effect on the responses to bradykinin and endothelin.(ABSTRACT TRUNCATED AT 250 WORDS)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.