The effect of phase transformations induced in the surface layer of alumina ceramics during its direct joining with copper activated with oxygen or titanium on the mechanical strength of the ceramic/copper joints was examined. The materials used in the experiments were an alumina single crystal, alumina ceramics (97.5 wt% Al2O3), the cermet mixtures: Cu-Cu2O with 10-50 wt% of Cu2O, copper with 5 wt% of Ti, and copper with 5 wt% of Ti and 10 wt% of Ag. The microstructure of the transition layer was examined by the X-ray diffraction method (XRD), scanning electron microscopy method (SEM) and energy dispersive x-ray spectroscopy (EDX). The mechanical strength of the joints was measured using the three-point bending method. The amount of oxygen optimal for the joining process was determined. It has been demonstrated that the cohesion of the joints depends not only on the formation of the individual phases but also, or even primarily, on the microstructure of the transition layer formed between them.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.