In this paper, a novel algorithm based on fuzzy logic and neural networks is proposed to find an approximation of the optimal step size µ for least-mean-squares (LMS) adaptive beamforming systems. A new error ensemble learning (EEL) curve is generated based on the final prediction value of the ensemble-average learning curve of the LMS adaptive algorithm. This information is classified and fed into a back propagation neural network, which automatically generates membership functions for a fuzzy inference system. An estimate of the optimal step size is obtained using a group of linguistic rules and the corresponding defuzzification method. Computer simulations show that a useful approximation of the optimal step size is obtained under different signal-to-noise plus interference ratios. The results are also compared with data obtained from a statistical analysis performed on the EEL curve. As a result of this application, a better meansquare-error is observed during the training process of the adaptive array beamforming system, and a higher directivity is achieved in the radiation beam patterns.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.