Laboratory and field experiments were conducted to investigate the ability of microwave remote sensing systems to detect the moisture status of a silt loam soil exhibiting abrupt changes in moisture content near the surface. Laboratory soil profiles were prepared with a discontinuous moisture boundary in the subsurface. Reflectivity measurements of these profiles were made with a bistatic reflectometer operating over the frequency ranges of 1–2 and 4–8 GHz (wavelength ranges of 30–15 and 7.5–3.75 cm, respectively). These measurements exhibited a well‐developed coherent interference pattern in good agreement with a simple two‐layer reflectivity model. Field measurements of bare soil surfaces were conducted for initially saturated profiles and continued for extended periods of drying. During drying, coherent interference patterns similar to those observed in the laboratory were detected. These appear to be due to steep moisture gradients occurring between drying layers near the surface. The field results were modeled by a five‐segment linear moisture profile with one or two steep segments and a multilayer reflectivity program. Agreement between model and field response over the frequency range was used to estimate the depth of drying layers within the soil. These depths were monitored over the second and third drying cycles. Formation of the drying layers under field conditions appears to be influenced by drying time, tillage, and evaporative demand. In any case, it appears that the coherent effects caused by nonuniform moisture profiles may substantially affect the reflectivity of even rough soil surfaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.