We present the results of an extensive computational study in which we show that combining scoring functions in an intersection-based consensus approach results in an enhancement in the ability to discriminate between active and inactive enzyme inhibitors. This is illustrated in the context of docking collections of three-dimensional structures into three different enzymes of pharmaceutical interest: p38 MAP kinase, inosine monophosphate dehydrogenase, and HIV protease. An analysis of two different docking methods and thirteen scoring functions provides insights into which functions perform well, both singly and in combination. Our data shows that consensus scoring further provides a dramatic reduction in the number of false positives identified by individual scoring functions, thus leading to a significant enhancement in hit-rates.
A thorough evaluation of some of the most advanced docking and scoring methods currently available is described, and guidelines for the choice of an appropriate protocol for docking and virtual screening are defined. The generation of a large and highly curated test set of pharmaceutically relevant protein-ligand complexes with known binding affinities is described, and three highly regarded docking programs (Glide, GOLD, and ICM) are evaluated on the same set with respect to their ability to reproduce crystallographic binding orientations. Glide correctly identified the crystallographic pose within 2.0 A in 61% of the cases, versus 48% for GOLD and 45% for ICM. In general Glide appears to perform most consistently with respect to diversity of binding sites and ligand flexibility, while the performance of ICM and GOLD is more binding site-dependent and it is significantly poorer when binding is predominantly driven by hydrophobic interactions. The results also show that energy minimization and reranking of the top N poses can be an effective means to overcome some of the limitations of a given docking function. The same docking programs are evaluated in conjunction with three different scoring functions for their ability to discriminate actives from inactives in virtual screening. The evaluation, performed on three different systems (HIV-1 protease, IMPDH, and p38 MAP kinase), confirms that the relative performance of different docking and scoring methods is to some extent binding site-dependent. GlideScore appears to be an effective scoring function for database screening, with consistent performance across several types of binding sites, while ChemScore appears to be most useful in sterically demanding sites since it is more forgiving of repulsive interactions. Energy minimization of docked poses can significantly improve the enrichments in systems with sterically demanding binding sites. Overall Glide appears to be a safe general choice for docking, while the choice of the best scoring tool remains to a larger extent system-dependent and should be evaluated on a case-by-case basis.
Perspective │2 Artificial intelligence (AI) tools are increasingly being applied in drug discovery. Whilst some protagonists point to vast opportunities potentially offered by such tools, others remain skeptical, waiting for a clear impact to be shown in drug discovery projects. The truth is probably somewhere between these extremes, but it is clear that AI is providing new challenges not only for the scientists involved but also for the biopharma industry and its established processes for discovering and developing new medicines. This article presents the views of a diverse group of international experts on the 'grand challenges' for small-molecule drug discovery with AI and approaches to address them.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.