Background: Many agricultural species and their pathogens have sequenced genomes and more are in progress. Agricultural species provide food, fiber, xenotransplant tissues, biopharmaceuticals and biomedical models. Moreover, many agricultural microorganisms are human zoonoses. However, systems biology from functional genomics data is hindered in agricultural species because agricultural genome sequences have relatively poor structural and functional annotation and agricultural research communities are smaller with limited funding compared to many model organism communities.
Plants frequently respond to herbivorous insect attack by synthesizing defense proteins that deter insect feeding and prevent additional herbivory. Maize (Zea mays L.) lines, resistant to feeding by a number of lepidopteran species, rapidly mobilize a unique 33-kDa cysteine protease in response to caterpillar feeding. The accumulation of the 33-kDa cysteine protease in the maize midwhorl was correlated with a significant reduction in caterpillar growth that resulted from impaired nutrient utilization. Black Mexican Sweetcorn callus transformed with mir1, the gene encoding the 33-kDa cysteine protease, expressed the protease and growth of caterpillars reared on the transgenic callus was reduced 60 -80%. Scanning electron microscopy was used to examine the effect of plant material expressing the 33-kDa cysteine protease on the structure of the caterpillar peritrophic matrix. Because the peritrophic matrix surrounds the food bolus, assists in digestive processes, and protects the caterpillar midgut from physical and chemical damage, disruption of peritrophic matrix may reduce caterpillar growth. The results indicated that the peritrophic matrix was severely damaged when caterpillars fed on resistant maize plants or transgenic Black Mexican Sweetcorn. The accumulation of the 33-kDa cysteine protease in response to caterpillar feeding, and its ability to damage the insect peritrophic matrix, represents an unusual host-plant resistance mechanism that may have applications in agricultural biotechnology.
Plants respond to insect feeding with a number of defense mechanisms. Using maize genotypes derived from Antiquan germ plasm that are resistant to Lepidoptera, we have demonstrated that a unique 33-kD cysteine proteinase accumulates in the whorl in response to larval feeding. The abundance of the proteinase increased dramatically at the site of larval feeding after 1 hr of infestation and continued to accumulate for as long as 7 days. The 33-kD cysteine proteinase was most abundant in the yellow-green portion of the whorl-the normal site of larval feeding and the tissue that has the greatest inhibitory effect on larval growth in bioassays. The proteinase was expressed in response to wounding and was found in senescent leaves. It may be a marker of programmed cell death. The gene coding for the proteinase, mir1 , has been transformed into Black Mexican Sweet callus. When larvae were reared on callus expressing the proteinase, their growth was inhibited ف 60 to 80%. The expression of a cysteine proteinase, instead of a cysteine proteinase inhibitor, may be a novel insect defense mechanism in plants. INTRODUCTIONOver the past 25 years, maize inbreds resistant to feeding by larvae of numerous lepidopteran species have been developed from Antiguan germ plasm (Williams and Davis, 1982;Williams et al., 1990a). Inbreds derived from this germ plasm (Mp704 and Mp708) are resistant to feeding by fall armyworm ( Spodoptera frugiperda ), southwestern corn borer ( Diatraea grandiosella), European corn borer ( Ostinia nubilalis ), sugarcane borer ( D. saccharalis), tobacco budworm ( Heliothis virescens ), corn earworm ( Helicoverpa zea ), and other Lepidoptera. Fall armyworm larvae feed extensively on whorl leaf tissue, often resulting in crop losses. Genetic and quantitative trait loci analyses indicate that resistance to these Lepidoptera is a quantitative trait regulated by several genes (Williams et al., 1989;Khairallah et al., 1998). Traits such as high hemicellulose content, low protein content, and leaf toughness appear to be correlated with reduced larval growth (Williams et al., 1998). No studies have indicated conclusively that secondary products contribute to the resistance, but two-dimensional gel electrophoresis has indicated that the presence of 36-and 21-kD proteins in the whorl may be predictive of resistance (Callahan et al., 1992).Bioassays in which fall armyworm larvae are reared on lyophilized whorl tissues indicate that larvae reared on resistant material weigh ف 50% less than those reared on susceptible material (Williams et al., 1990b). Larvae reared on lyophilized whorl tissue from resistant genotypes are smaller, grow more slowly, and pupate later than those reared on similar material from susceptible genotypes (Chang et al., 2000). The major effect of this germplasm is to slow larval growth and development and to increase the amount of time larvae are vulnerable to predators and parasites.The same phenotype, a 50% reduction in larval growth, is apparent when larvae are reared on nonfriable callus ...
Resistance to mycotoxin contamination was compared in field samples harvested from 45 commercial corn (maize) hybrids and 5 single-cross aflatoxin-resistant germplasm lines in years with high and moderate heat stress. In high heat stress, mycotoxin levels were (4.34 +/- 0.32) x 10(3) microg/kg [(0.95-10.5 x 10(3) microg/kg] aflatoxins and 11.2 +/- 1.2 mg/kg (0-35 mg/kg) fumonisins in commercial hybrids and 370 +/- 88 microg/kg (140-609 microg/kg) aflatoxins and 4.0 +/- 1.3 mg/kg (1.7-7.8 mg/kg) fumonisins in aflatoxin-resistant germplasm lines. Deoxynivalenol was detected (one-fourth of the samples, 0-1.5 mg/kg), but not zearalenone. In moderate heat stress, mycotoxin levels were 6.2 +/- 1.6 microg/kg (0-30.4 microg/kg) aflatoxins and 2.5 +/- 0.2 mg/kg (0.5-4.8 mg/kg) fumonisins in commercial hybrids and 1.6 +/- 0.7 microg/kg (0-7 microg/kg) aflatoxins and 1.2 +/- 0.2 mg/kg (0.5-3.0 mg/kg) fumonisins in aflatoxin-resistant germplasm lines. The results are consistent with heat stress playing an important role in the susceptibility of corn to both aflatoxin and fumonisin contamination, with significant reductions of both aflatoxins and fumonisins in aflatoxin-resistant germplasm lines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.