A rapid spectroscopic approach for whole-organism fingerprinting of Fourier transform infrared (FT-IR) spectroscopy was used to analyse 16 isolates from five closely related species of Fusarium: F. graminearum, F. moniliforme, F. nivale, F. semitectum and F. oxysporum. Principal components analysis and hierarchical cluster analysis were used to study the clusters in the data. On visual inspection of the clusters from both methods, the spectra were not differentiated into five separate clusters corresponding to species and these unsupervised methods failed to identify these fungal strains. When the data were trained by back propagation algorithm of artificial neural networks (ANNs) with principal components scores of spectra used as input modes, the strains were accurately predicted and recognized. The results in this study show that FT-IR spectroscopy in combination with principal component artificial neural networks (PC-ANNs) is well suited for identifying Fusarium spp. It would be advantageous to establish a comprehensive database of taxonomically well-defined Fusarium species to aid the identification of unknown strains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.