The fatty-acylation-deficient bovine endothelial NO synthase (eNOS) mutant (Gly-2 to Ala-2, G2AeNOS) was purified from a baculovirus overexpression system. The purified protein was soluble and highly active (0.2-0.7 micromol of l-citrulline. mg-1.min-1), contained 0. 77+/-0.01 equivalent of haem per subunit, showed a Soret maximum at 396 nm, and exhibited only minor uncoupling of NADPH oxidation in the absence of l-arginine or tetrahydrobiopterin. Radioligand binding studies revealed KD values of 147+/-24.1 nM and 52+/-9.2 nM for specific binding of tetrahydrobiopterin in the absence and presence of 0.1 mM l-arginine respectively. The positive co-operative effect of l-arginine was due to a pronounced decrease in the rate of tetrahydrobiopterin dissociation (from 1.6+/-0.5 to 0. 3+/-0.1 min-1). Low-temperature SDS gel electrophoresis showed that approx. 80% of the protein migrated as haem-containing dimer after preincubation with l-arginine and tetrahydrobiopterin. Gel-filtration chromatography yielded one peak with a Stokes radius of 6.8+/-0.04 nm, corresponding to a hydrodynamic volume of 1. 32x10(-24) m3, whereas haem-deficient preparations (approx. 0.3 equivalent per subunit) contained an additional protein species with a hydrodynamic radius of 5.1+/-0.2 nm and a corresponding volume of 0.55x10(-24) m3, suggesting that haem availability regulates eNOS dimerization.
The effects of the four nitro-compounds nitroglycerin, nitroprusside-Na, NaNO2 and B 744-99 were studied simultaneously on length and on cGMP-levels in isolated circular strips of bovine coronary arteries. 1. All 4 nitro-compounds concentration dependently relaxed the strips in close association with pronounced increases in cGMP-levels which preceded the mechanical responses. 2. The relaxant effects of all 4 nitro-compounds were significantly potentiated by the predominant inhibitor of cGMP-hydrolysis M & B 22,948, which also potentiated the increase in cGMP-levels of the two nitro-compounds in which it was studied (nitroglycerin and nitroprusside-Na). 3. Non-substituted cGMP and -- much stronger -- its 8 bromo-derivative also relaxed the strips and these effects were likewise potentiated by M & B 22,948. 4. When the log increase in cGMP produced by the 4 nitro-compounds were plotted against percent relaxation (probit scale) a linear and highly significant positive correlation was obtained. 5. The results provide evidence that the increases in cGMP caused by the 4 nitro-compounds studied are responsible for the smooth muscle relaxing actions of these drugs.
A B S T R A C T Mevinolin reduces cholesterol synthesis by inhibiting 3-hydroxy-3-methylglutaryl-coenzyme A reductase. The safety and effectiveness of this agent was evaluated in a double-blind, placebo-controlled study in One subject (12.5 mg) was withdrawn because of abdominal pain and diarrhea. These results suggest that if long-term safety can be demonstrated, inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A reductase are likely to prove useful in the treatment of hypercholesterolemia. INTRODUCTION Elevated serum cholesterol is a major factor in the development of atherosclerosis and coronary heart disease (1, 2). There is a substantial and currently unsatisfied need for safe, well tolerated therapy capable of effecting large reductions in serum cholesterol.
Inhibition of tetrahydrobiopterin (H4biopterin) biosynthesis in endothelial cells almost completely abolished the agonist-induced formation of endothelium-derived relaxing factor (EDRF) (NO). This inhibitory effect could be antagonized when H4biopterin biosynthesis was restored by activating a salvage pathway. These data indicate that the formation of EDRF strictly depends on the presence of intracellular H4biopterin, which, in addition to Ca2+, may represent a further physiological and/or pathophysiological regulatory of endothelial NO synthases.
The NO concentrations released from donor compounds are difficult to predict as they are determined by formation and inactivation reactions. To calculate the concentrations of NO over time, we have developed a mathematical model which is based on a system of two differential equations describing the first order decomposition of the NO donor in association with the third order reaction of NO with oxygen. Although there is no closed formula for the solution, it can be easily computed by any standard numerical differential solver or simulation software with the following input parameters: initial concentration and decomposition rate constant of the NO donor, O2 concentration, and rate constant for NO autoxidation. The model was validated by monitoring NO release from 2,2-diethyl-1-nitroso-oxyhydrazine (DEA/NO) with a Clark-type NO-sensitive electrode at two different temperatures (25 and 37 degrees C) and DEA/NO concentrations ranging from 1 to 10 microM. Under all conditions, there was an excellent agreement between experimental and calculated data. In addition to the computer modeling, we present graphical plots which allow a rough but very easy estimation of the actual NO concentrations if appropriate computer software should not be available.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.