A bstract. Arginine vasopressin (AVP) stimulates ACTH release in man and acts synergistically with synthetic ovine corticotropin-releasing factor (oCRF) in vitro. This study was designed to examine in man the combined effects of synthetic AVP (10 U intramuscularly) and oCRF (1 gg/kg intravenously) on ACTH release.Five normal male volunteers participated in five separate experiments: (a) AVP alone; (b) oCRF alone; (c) AVP followed by oCRF 15 min later; (d) simultaneous AVP and oCRF; and (e) insulin-induced hypoglycemia. Plasma immunoreactive ACTH (IR-ACTH) and IR-cortisol were measured for 4 h after injection of each hormone; basal levels for all subjects were .9±1.2 pg/ml and 4. 9±0.4 ,gg/dl (mean±SE), respectively. AVP and oCRF, when given individually, caused rapid rises in IR-ACTH to similar peak levels of 25±6.6 and 33±4.6 pg/ml, respectively. AVP given 15 min before oCRF caused a 2.6-fold potentiation ofthe oCRF response, with a peak IR-ACTH of 85±4.6 pg/ml. AVP given at the same time as oCRF produced a fourfold potentiation of the peak IR-ACTH response to 132±11 pg/ml. These ACTH responses were far greater than those previously observed after 30-fold greater doses of oCRF alone. By way of comparison, insulin-induced hypoglycemia caused a peak IR-ACTH of 169±20 pg/ml. IR-ACTH returned to base line at 60-90 min after AVP alone, whereas the prolonged effect of oCRF was apparent whether it was given alone or in combination with AVP. The mean peak IR-cortisol responses to AVP, oCRF, and AVP given 15 min before oCRF were similar (16.5±0.9, 16.4±2.3, and 18.5±0.8 ,ug/dl, respectively), but the peak IR-cortisol responses to AVP and oCRF given simultaneously and to insulininduced hypoglycemia were 1.5 and 1.7 times greater, respectively. IR-cortisol returned to base line within 2-3 h after AVP alone, but remained elevated for at least 4 h after oCRF alone or in combination with AVP. These results indicate that AVP acts synergistically with oCRF to release ACTH in man and suggest that AVP may play a physiologic role in modulating the ACTH response mediated by corticotropin-releasing factor.
Solid fueled rockets, however, represent only a portion of the emission inventory of the space launch industry. Another widely used propellant combination is liquid oxygen and kerosene (LOX/RP; RP refers to RP-1 or RG-1, kerosene distillations widely used as rocket fuel.) Careful study of LOX/RP combustion emissions is justified for several reasons. LOX/RP exhaust accounts for a significant fraction (about one fourth by mass in 1998) of the total stratospheric emission by rockets and several powerful LOX/RP rockets in development will increase the relative impact of these emissions. In this paper we present measurements obtained in the stratospheric plume wakes of a Delta II rocket that provide evidence that reactive chlorine gas may not be the only chemically active component of the Delta II emission.
To determine whether the plasma immunoreactive ACTH (IR-ACTH) and IR-cortisol responses to ovine corticotropin-releasing hormone (oCRH) depend on the time of day, we administered 1 microgram/kg BW synthetic oCRH as an iv bolus dose to five normal men at their usual time of awakening between 0530-0740 h, at 1600 h, and at 2300 h. Mean basal plasma IR-ACTH and IR-cortisol levels were highest upon awakening, intermediate at 1600 h, and lowest at 2300 h, reflecting the diurnal rhythm of ACTH secretion. There was no significant difference in the plasma IR-ACTH response to oCRH at different times of the day. In contrast, the mean maximum plasma IR-cortisol increment and mean integrated response were 2- and 2.6-fold greater (P less than 0.05), respectively, at 2300 h than upon awakening. In another study, oCRH was given in the morning (0700-0900 h) to 22 normal men and in the late afternoon (1600-1800 h) to 24 normal men. Mean basal plasma IR-ACTH and IR-cortisol levels were significantly higher (P less than 0.001) in the morning [24 +/- 3 pg/ml (mean +/- SEM) and 10.6 +/- 0.8 micrograms/dl, respectively] than in the afternoon (13 +/- 2 pg/ml and 5.6 +/- 0.6 micrograms/dl, respectively). Mean peak plasma IR-ACTH was slightly greater in the morning (60 +/- 5.5 pg/ml) than in the afternoon (47 +/- 5.5 pg/ml), the mean maximum plasma IR-ACTH increments were the same (35 +/- 4 and 34 +/- 5 pg/ml, respectively), and the mean integrated IR-ACTH response was slightly less in the morning (2036 +/- 414 vs. 2365 +/- 358 pg . min/ml), but none of these differences was statistically significant. Mean peak plasma IR-cortisol concentrations in the morning and afternoon were similar (18.7 +/- 0.7 and 17.3 +/- 0.9 micrograms/dl, respectively), but the mean maximum plasma IR-cortisol increments (8.1 +/- 0.8 and 11.7 +/- 0.9 micrograms/dl, respectively; P less than 0.005), and the mean integrated IR-cortisol responses (588 +/- 115 and 976 +/- 95 micrograms . min/dl, respectively; P less than 0.01) were greater in the afternoon. There was an inverse correlation between basal plasma IR-cortisol concentration and the integrated IR-ACTH response (P less than 0.05), the maximum IR-cortisol increment (P less than 0.001), and the integrated IR-cortisol response (P less than 0.001).(ABSTRACT TRUNCATED AT 400 WORDS)
A balloon payload instrumented with a double‐probe electric field detector and an X ray scintillation counter was launched from Roberval, Quebec, Canada (L =4.1) at 0828 UT (0328 LT) on July 9, 1975. A magnetospheric substorm was observed locally between 0815 and 1100 UT, which produced a maximum ΔB of ∼500 nT at ∼0930 UT. A single‐cell atmospheric thunderstorm developed northeast of Roberval beginning around 0925 UT which was most intense from ∼1000 to 1035 UT. Detailed study of the electrical properties of the thunderstorm, the X ray precipitation data, and VLF spheric data leads to three conclusions. First, the electrical coupling from the thunderstorm to the magnetosphere increases with frequency from dc to the VLF; for the observed storm the amplitude at the ionosphere of thunderstorm produced electric fields was not significant at frequencies below 0.1 Hz. Second, the atmospheric conductivity above the thunderstorm was observed to be about one‐half the fair weather value prior to 1000 UT; decreased to about one‐quarter the fair weather value at about 1000 UT; and remained depressed after the end of the thunderstorm. This result was contrary to that expected on the basis of previous work and is one which merits considerably more investigation. Third, the data show a high probability that half‐hop whistlers initiated by sferics from the thunderstorm triggered energetic electron precipitation from the magnetosphere.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.