Crouzon syndrome is an autosomal dominant condition causing premature fusion of the cranial sutures (craniosynostosis) and maps to chromosome 10q25-q26. We now present evidence that mutations in the fibroblast growth factor receptor 2 gene (FGFR2) cause Crouzon syndrome. We found SSCP variations in the B exon of FGFR2 in nine unrelated affected individuals as well as complete cosegregation between SSCP variation and disease in three unrelated multigenerational families. In four sporadic cases, the normal parents did not have SSCP variation. Finally, direct sequencing has revealed specific mutations in the B exon in all nine sporadic and familial cases, including replacement of a cysteine in an immunoglobulin-like domain in five patients.
Myotonic dystrophy is the commonest adult form of muscular dystrophy, with an estimated incidence of 1 per 7,500, although this is likely to be an underestimate because of the difficulty of detecting minimally affected individuals. It is a multisystem autosomal dominant disorder of unknown biochemical basis. No case of new mutation has been proven. We have isolated a human genomic clone that detects novel restriction fragments specific to individuals with myotonic dystrophy. A two-allele EcoRI polymorphism is seen in normal individuals, but in most affected individuals one of the normal alleles is replaced by a larger fragment, which varies in length both between unrelated affected individuals and within families. The unstable nature of this region may explain the characteristic variation in severity and age at onset of the disease. A second polymorphism at this locus is in almost complete linkage disequilibrium with myotonic dystrophy, strongly supporting our earlier results which indicated that most cases are descended from one original mutation.
Okihiro syndrome refers to the association of forearm malformations with Duane syndrome of eye retraction. Based on the reported literature experience, clinical diagnosis of the syndrome can be elusive, owing to the variable presentation in families reported. Specifically, there is overlap of clinical features with other conditions, most notably Holt-Oram syndrome, a condition resulting from mutation of the TBX5 locus and Townes-Brocks syndrome, known to be caused by mutations in the SALL1 gene. Arising from our observation of several malformations in Okihiro syndrome patients which are also described in Townes-Brocks syndrome, we postulated that Okihiro syndrome might result from mutation of another member of the human SALL gene family. We have characterized the human SALL4 gene on chromosome 20q13.13-q13.2. Moreover, we have identified literature reports of forelimb malformations in patients with cytogenetically identifiable abnormalities of this region. We here present evidence in 5 of 8 affected families that mutation at this locus results in the Okihiro syndrome phenotype.
Mutations in the fibroblast growth factor receptor 2 (FGFR2) gene have been identified in Crouzon syndrome, an autosomal dominant condition causing premature fusion of the cranial sutures (craniosynostosis). A mutation in FGFR1 has been established in several families with Pfeiffer syndrome, where craniosynostosis is associated with specific digital abnormalities. We now report point mutations in FGFR2 in seven sporadic Pfeiffer syndrome patients. Six of the seven Pfeiffer syndrome patients share two missense mutations, which have also been reported in Crouzon syndrome. The Crouzon and Pfeiffer phenotypes usually breed true within families and the finding of identical mutations in unrelated individuals giving different phenotypes is a highly unexpected observation.
The Antley-Bixler syndrome has been thought to be caused by an autosomal recessive gene. However, patients with this phenotype have been reported with a new dominant mutation at the FGFR2 locus as well as in the oVspring of mothers taking the antifungal agent fluconazole during early pregnancy. In addition to the craniosynostosis and joint ankylosis which are the clinical hallmarks of the condition, many patients, especially females, have genital abnormalities. We now report abnormalities of steroid biogenesis in seven of 16 patients with an Antley-Bixler phenotype. Additionally, we identify FGFR2 mutations in seven of these 16 patients, including one patient with abnormal steroidogenesis. These findings, suggesting that some cases of Antley-Bixler syndrome are the outcome of two distinct genetic events, allow a hypothesis to be formulated under which we may explain all the diVering and seemingly contradictory circumstances in which the Antley-Bixler phenotype has been recognised. (J Med Genet 2000;37:26-32)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.