BackgroundPostnatal lead exposure in children and animals produces alterations in the visual system primarily characterized by decreases in the rod-mediated (scotopic) electroretinogram (ERG) amplitude (subnormality). In contrast, low-level gestational Pb exposure (GLE) increases the amplitude of scotopic ERGs in children (supernormality).ObjectivesThe goal of this study was to establish a rat model of human equivalent GLE and to determine dose–response effects on scotopic ERGs and on retinal morphology, biochemistry, and dopamine metabolism in adult offspring.MethodsWe exposed female Long-Evans hooded rats to water containing 0, 27 (low), 55 (moderate), or 109 (high) ppm of Pb beginning 2 weeks before mating, throughout gestation, and until postnatal day (PND) 10. We measured maternal and litter indices, blood Pb concentrations (BPb), retinal Pb concentrations, zinc concentrations, and body weights. On PND90, we performed the retinal experiments.ResultsPeak BPb concentrations were < 1, 12, 24, and 46 μg/dL in control, low-, moderate- and high-level GLE groups, respectively, at PNDs 0–10. ERG supernormality and an increased rod photoreceptor and rod bipolar cell neurogenesis occurred with low- and moderate-level GLE. In contrast, high-level GLE produced ERG subnormality, rod cell loss, and decreased retinal Zn levels. GLE produced dose-dependent decreases in dopamine and its utilization.ConclusionsLow- and moderate-level GLE produced persistent scotopic ERG supernormality due to an increased neurogenesis of cells in the rod signaling pathway and/or decreased dopamine utilization, whereas high-level GLE produced rod-selective toxicity characterized by ERG subnormality. The ERG is a differential and noninvasive biomarker of GLE. The inverted U-shaped dose–response curves reveal the sensitivity and vulnerability of the developing retina to GLE.
BackgroundGestational lead exposure (GLE) produces novel and persistent rod-mediated electroretinographic (ERG) supernormality in children and adult animals.ObjectivesWe used our murine GLE model to test the hypothesis that GLE increases the number of neurons in the rod signaling pathway and to determine the cellular mechanisms underlying the phenotype.ResultsBlood lead concentrations ([BPb]) in controls and after low-, moderate-, and high-dose GLE were ≤ 1, ≤ 10, approximately 25, and approximately 40 μg/dL, respectively, at the end of exposure [postnatal day 10 (PND10)]; by PND30 all [BPb] measures were ≤ 1 μg/dL. Epifluorescent, light, and confocal microscopy studies and Western blots demonstrated that late-born rod photoreceptors and rod and cone bipolar cells (BCs), but not Müller glial cells, increased in a nonmonotonic manner by 16–30% in PND60 GLE offspring. Retinal lamination and the rod:cone BC ratio were not altered. In vivo BrdU (5-bromo-2-deoxyuridine) pulse-labeling and Ki67 labeling of isolated cells from developing mice showed that GLE increased and prolonged retinal progenitor cell proliferation. TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling) and confocal studies revealed that GLE did not alter developmental apoptosis or produce retinal injury. BrdU birth-dating and confocal studies confirmed the selective rod and BC increases and showed that the patterns of neurogenesis and gliogenesis were unaltered by GLE.ConclusionsOur findings suggest two spatiotemporal components mediated by dysregulation of different extrinsic/intrinsic factors: increased and prolonged cell proliferation and increased neuronal (but not glial) cell fate. These findings have relevance for neurotoxicology, pediatrics, public health, risk assessment, and retinal cell biology because they occurred at clinically relevant [BPb] and correspond with the ERG phenotype.
The blood-brain barrier (BBB) consists in part of a highly specialized set of cells which separates the brain from the vascular system. The BBB controls the entry and exit of substances from the brain tissue through tight junctions (TJs) between endothelial cells. It is known that the hormone prolactin (PRL) is able to regulate endothelial-dependent processes, like the balance between proliferation and apoptosis and the mammary epithelial permeability. However, the effects of PRL and the role it plays in the BBB permeability are still not well understood. A primary culture of bovine brain microvessel endothelial cells was used as in vitro model of BBB. Cells were treated with PRL (0.1, 1, 10 and 100 nM) for 24 hours. PRL significantly increased cellular proliferation at 10 and 100 nM, but did not modify basal apoptosis. These effects were dependent on the production of the mitogenic factor nitric oxide (NO). PRL significantly decreased the permeability and promoted an increase in trans-endothelial electrical resistance in a NO-independent way. PRL also increased the expression of the TJs proteins claudin-5 and occludin. The short form of the PRL receptor was detected in these cells but its expression was not modified by PRL. Together, these results suggest that PRL has the ability to increase cellular proliferation associated with a decrease on BBB permeability by increasing the expression of TJs proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.