Directed movement is a characteristic of many living organisms and occurs as a result of the transformation of chemical energy into mechanical energy. Myosin is one of three families of molecular motors that are responsible for cellular motility. The three-dimensional structure of the head portion of myosin, or subfragment-1, which contains both the actin and nucleotide binding sites, is described. This structure of a molecular motor was determined by single crystal x-ray diffraction. The data provide a structural framework for understanding the molecular basis of motility.
The mode of binding of the inhibitor, and a comparison between the native and inhibited urease structures, indicate a novel mechanism for enzymatic urea hydrolysis which reconciles the available structural and biochemical data.
The structure of Bacillus pasteurii urease (BPU) inhibited with phosphate was solved and refined using synchrotron X-ray diffraction data from a vitrified crystal (1.85 A resolution, 99.3% completeness, data redundancy 4.6, R-factor 17.3%, PDB code 6UBP). A distance of 3.5 A separates the two Ni ions in the active site. The binding mode of the inhibitor involves the formation of four coordination bonds with the two Ni ions: one phosphate oxygen atom symmetrically bridges the two metal ions (1.9-2.0 A), while two of the remaining phosphate oxygen atoms bind to the Ni atoms at 2.4 A. The fourth phosphate oxygen is directed into the active site channel. Analysis of the H-bonding network around the bound inhibitor indicates that phosphate is bound as the H2PO4- anion, and that an additional proton is present on the Odelta2 atom of Asp(alpha363), an active site residue involved in Ni coordination through Odelta1. The flexible flap flanking the active site cavity is in the open conformation. Analysis of the complex reveals why phosphate is a relatively weak inhibitor and why sulfate does not bind to the nickels in the active site. The implications of the results for the understanding of the urease catalytic mechanism are reviewed. A novel alternative for the proton donor is presented.
The structure of the complex of urease, a Ni-containing metalloenzyme, with boric acid was determined at 2.10 A resolution. The complex shows the unprecedented binding mode of the competitive inhibitor to the dinuclear metal center, with the B(OH)3 molecule bridging the Ni ions and leaving in place the bridging hydroxide. Boric acid can be considered a substrate analogue of urea, and the structure supports the proposal that the Ni-bridging hydroxide acts as the nucleophile in the enzymatic process of urea hydrolysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.