The ability of normal subjects to hydroxylate mephenytoin (100 mg) or debrisoquine (10 mg) after oral dosing was investigated in 156 unrelated Caucasians living in middle Tennessee. Urinary recovery of 4-hydroxymephenytoin (4-OH-M) and the urinary S:R enantiomeric ratio of mephenytoin measured in an 8-hr urine sample were investigated as phenotypic traits for mephenytoin, and the urinary metabolic ratio of debrisoquine was used to determine the debrisoquine hydroxylase phenotype. Both urinary 4-OH-M and the S:R ratio of mephenytoin discriminated between extensive (EM) and poor (PM) metabolizers of mephenytoin. The frequencies of PMs for mephenytoin and debrisoquine hydroxylation activity were 2.6% and 7.0%. These two defects in oxidative metabolism were not observed in the same subjects, which suggests that 4-hydroxylation of mephenytoin is a new polymorphism independent of that for debrisoquine.
The 8-h urinary metabolic profiles of encainide and its oxidized metabolites, O-desmethyl- (ODE), 3-methoxy-O-desmethyl- (MODE), N-desmethyl- (NDE) and N, O-didesmethyl- (DDE) encainide were studied in a group of 112 normal Caucasians. Nine of these subjects (8%) were defective in their ability to 4-hydroxylate debrisoquine. The cumulative frequency distribution of the 8-h recovery ratio of encainide/ODE indicated two distinct populations in complete concordance with the debrisoquine phenotyping. The subjects with an 'extensive metabolizer' (EM) phenotype had a ratio from 0.003 to 0.9 whereas the PM group had values from 7.4 to 48. In addition, no MODE was detected in the urine from 'poor metabolizers' (PM). The oxidative metabolism of encainide, specifically the O-demethylation pathway, is, therefore, polymorphically distributed and controlled by the same genetic factor(s) that determine the 4-hydroxylation of debrisoquine. In EM subjects, ODE and MODE are the major metabolites in plasma and their concentrations are much greater than those of unchanged drug. As ODE is a more potent antiarrhythmic agent than encainide and MODE is at least equipotent, these metabolites significantly contribute to the overall antiarrhythmic effect in EM patients. The low plasma concentrations of ODE and MODE in PM subjects would be expected to result in inefficacious therapy when usual doses of encainide are administered. However, in such individuals, chronic oral therapy results in accumulation of unmetabolized encainide to far higher levels than in EM subjects. As encainide itself has intrinsic antiarrhythmic activity at these concentrations, this generally results in the desired clinical response. Despite pronounced interphenotypic differences in encainide's disposition and pharmacokinetics, the polymorphic oxidative metabolism appears to have limited consequences for the drug's clinical efficacy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.