Cross-plane electronic and thermal transport properties of p-type La0.67Sr0.33MnO3/LaMnO3 perovskite oxide metal/semiconductor superlattices J. Appl. Phys. 112, 063714 (2012) Polarization Coulomb field scattering in In0.18Al0.82N/AlN/GaN heterostructure field-effect transistors J. Appl. Phys. 112, 054513 (2012) Modulation doping to control the high-density electron gas at a polar/non-polar oxide interface Appl. Phys. Lett. 101, 111604 (2012) Ultra low-resistance palladium silicide Ohmic contacts to lightly doped n-InGaAs
We report on the growth of nominally undoped GaN/AlxGa1−xN/GaN (x<0.4) high mobility heterostructures with N-face or Ga-face polarity on sapphire substrates by plasma-induced molecular beam epitaxy (PIMBE) and metalorganic chemical vapor deposition in order to study the formation and electrical transport properties of polarization induced two-dimensional electron gases (2DEGs). By depositing a thin AlN nucleation layer on the sapphire substrates before the growth of a GaN buffer layer by PIMBE, we were able to change the polarity of the wurtzite films from N to Ga face. The switch in the polarity causes a change in the sign of the spontaneous and piezoelectric polarization directed along the c axis of the strained AlGaN barrier. As a consequence the polarization induced 2DEG is confined at different interfaces in heterostructures with different polarities. The transport properties of the 2DEGs in Ga- and N-face heterostructures were investigated by a combination of capacitance–voltage profiling, Hall effect, and Shubnikov-de Haas measurements. Dominant electron scattering mechanisms are studied in order to provide the knowledge necessary for further improvements of the electron transport properties and performance of AlGaN/GaN based “normal” (based on Ga-face heterostructures) and “inverted” (based on N-face heterostructures) high electron mobility transistors.
Electron microscopy studies of annealed GaAs layers grown by molecular beam epitaxy at low temperature (200 °C) were used to monitor growth of As precipitates. Ostwald ripening kinetics was used to deduce a migration enthalpy of 1.4±0.3 eV for the diffusion mediating defect. A conclusive picture of the dominant diffusion mechanism can be given, attributing this value to the migration enthalpy of gallium vacancies (VGa), which is well established by other experiments. The present studies indicate that growth of As precipitates is driven by supersaturation of VGa.
The authors report on successful growth of bialkali photocathode based on CsK 2 Sb using the alkali metal vapors generated by thermal decomposition of alkali azides. Details about the ultrahigh vacuum growth system and the procedure used are provided. The final quantum efficiency of the photocathode under illumination with 532 nm laser is 9.6%. This value is comparable to the largest ones obtained in our previous experiments using commercial dispensers, indicating that alkali azides are a viable alternative.
Room temperature and low temperature photoluminescence studies of AlxGa1−xN/GaN superlattices reveal a red shift of the dominant transition band relative to the bulk GaN bandgap. The shift is attributed to the quantum-confined Stark effect resulting from polarization fields in the superlattices. A theoretical model for the band-to-band transition energies based on perturbation theory and a variational approach is developed. Comparison of the experimental data with this model yields a polarization field of 4.6 × 105 V/cm for room temperature Al0.1Ga0.9N/GaN and 4.5 × 105 V/cm for room temperature Al0.2Ga0.8N/GaN. At low temperatures the model yields 5.3 × 105 V/cm for Al0.1Ga0.9N/GaN and 6.3 × 105 V/cm for Al0.2Ga0.8N/GaN. The emission bands exhibit a blue shift at high excitation densities indicating screening of internal polarization fields by photo-generated free carriers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.