Carrier concentration profiles of two-dimensional electron gases are investigated in wurtzite, Ga-face Al x Ga 1Ϫx N/GaN/Al x Ga 1Ϫx N and N-face GaN/Al x Ga 1Ϫx N/GaN heterostructures used for the fabrication of field effect transistors. Analysis of the measured electron distributions in heterostructures with AlGaN barrier layers of different Al concentrations (0.15ϽxϽ0.5) and thickness between 20 and 65 nm demonstrate the important role of spontaneous and piezoelectric polarization on the carrier confinement at GaN/AlGaN and AlGaN/GaN interfaces. Characterization of the electrical properties of nominally undoped transistor structures reveals the presence of high sheet carrier concentrations, increasing from 6ϫ10 12 to 2ϫ10 13 cm Ϫ2 in the GaN channel with increasing Al-concentration from xϭ0.15 to 0.31. The observed high sheet carrier concentrations and strong confinement at specific interfaces of the N-and Ga-face pseudomorphic grown heterostructures can be explained as a consequence of interface charges induced by piezoelectric and spontaneous polarization effects.
Two dimensional electron gases in AlxGa1−xN/GaN based heterostructures, suitable for high electron mobility transistors, are induced by strong polarization effects. The sheet carrier concentration and the confinement of the two dimensional electron gases located close to the AlGaN/GaN interface are sensitive to a large number of different physical properties such as polarity, alloy composition, strain, thickness, and doping of the AlGaN barrier. We have investigated these physical properties for undoped and silicon doped transistor structures by a combination of high resolution x-ray diffraction, atomic force microscopy, Hall effect, and capacitance–voltage profiling measurements. The polarization induced sheet charge bound at the AlGaN/GaN interfaces was calculated from different sets of piezoelectric constants available in the literature. The sheet carrier concentration induced by polarization charges was determined self-consistently from a coupled Schrödinger and Poisson equation solver for pseudomorphically and partially relaxed barriers with different alloy compositions. By comparison of theoretical and experimental results, we demonstrate that the formation of two dimensional electron gases in undoped and doped AlGaN/GaN structures rely both on piezoelectric and spontaneous polarization induced effects. In addition, mechanisms reducing the sheet carrier concentrations like nonabrupt interfaces, dislocations, and the possible influence of surface states on the two dimensional electron gases will be discussed briefly.
We have studied the dependence of the absorption edge and the refractive index of wurtzite AlxGa1−xN films on temperature and composition using transmission and photothermal deflection spectroscopy. The Al molar fraction of the AlxGa1−xN films grown by plasma induced molecular beam epitaxy was varied through the entire range of composition (0⩽x⩽1). We determined the absorption edges of AlxGa1−xN films and a bowing parameter of 1.3±0.2 eV. The refractive index in the photon energy range between 1 and 5.5 eV and temperatures between 7 and 295 K was deduced from the interference fringes. The static refractive index n(0) changed from 2.29 for GaN to 1.96 for AlN at room temperature. A variation of temperature from 295 to 7 K resulted in a decrease of refractive index (at photon energies close to the band gap) by 0.05±0.01 and in an energy shift of the absorption edge of about 64±5 meV independent of the Al content of the films. Using the Kramers–Kronig dispersion relation and an approximation for the dispersion coefficient for photon energies near the band gap, the refractive index could be described as a function of photon energy, Al content, and temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.