Two dimensional electron gases in AlxGa1−xN/GaN based heterostructures, suitable for high electron mobility transistors, are induced by strong polarization effects. The sheet carrier concentration and the confinement of the two dimensional electron gases located close to the AlGaN/GaN interface are sensitive to a large number of different physical properties such as polarity, alloy composition, strain, thickness, and doping of the AlGaN barrier. We have investigated these physical properties for undoped and silicon doped transistor structures by a combination of high resolution x-ray diffraction, atomic force microscopy, Hall effect, and capacitance–voltage profiling measurements. The polarization induced sheet charge bound at the AlGaN/GaN interfaces was calculated from different sets of piezoelectric constants available in the literature. The sheet carrier concentration induced by polarization charges was determined self-consistently from a coupled Schrödinger and Poisson equation solver for pseudomorphically and partially relaxed barriers with different alloy compositions. By comparison of theoretical and experimental results, we demonstrate that the formation of two dimensional electron gases in undoped and doped AlGaN/GaN structures rely both on piezoelectric and spontaneous polarization induced effects. In addition, mechanisms reducing the sheet carrier concentrations like nonabrupt interfaces, dislocations, and the possible influence of surface states on the two dimensional electron gases will be discussed briefly.
Transient electron transport and velocity overshoot in wurtzite GaN, InN, and AlN are examined and compared with that which occurs in GaAs. For all materials, we find that electron velocity overshoot only occurs when the electric field is increased to a value above a certain critical field, unique to each material. This critical field is strongly dependent on the material, about 4 kV/cm for the case of GaAs but much higher for the III–nitride semiconductors: 140 kV/cm for GaN, 65 kV/cm for InN, and 450 kV/cm for AlN. We find that InN exhibits the highest peak overshoot velocity and that this velocity overshoot lasts over the longest distances when compared with GaN and AlN. Finally, using a one-dimensional energy–momentum balance approach, a simple model is used to estimate the cutoff frequency performance of nitride based heterojunction field effect transistors (HFETs) and a comparison is made to recently fabricated AlGaN/GaN HFETs.
We present the velocity-field characteristics of wurtzite indium nitride, determined using an ensemble Monte Carlo approach. It is found that indium nitride exhibits an extremely high peak drift velocity at room temperature, 4.3×107 cm/s, at a doping concentration of 1.0×1017 cm−3. We also demonstrate that the saturation drift velocity of indium nitride, 2.5×107 cm/s, is comparable to that of gallium nitride, and much larger than that of gallium arsenide. Our results suggest that the transport characteristics of indium nitride are superior to those of gallium nitride and gallium arsenide, over a wide range of temperatures, from 150 to 500 K, and doping concentrations, up to 1.0×1019 cm−3. Hence, indium nitride has considerable potential for device applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.