Carrier concentration profiles of two-dimensional electron gases are investigated in wurtzite, Ga-face Al x Ga 1Ϫx N/GaN/Al x Ga 1Ϫx N and N-face GaN/Al x Ga 1Ϫx N/GaN heterostructures used for the fabrication of field effect transistors. Analysis of the measured electron distributions in heterostructures with AlGaN barrier layers of different Al concentrations (0.15ϽxϽ0.5) and thickness between 20 and 65 nm demonstrate the important role of spontaneous and piezoelectric polarization on the carrier confinement at GaN/AlGaN and AlGaN/GaN interfaces. Characterization of the electrical properties of nominally undoped transistor structures reveals the presence of high sheet carrier concentrations, increasing from 6ϫ10 12 to 2ϫ10 13 cm Ϫ2 in the GaN channel with increasing Al-concentration from xϭ0.15 to 0.31. The observed high sheet carrier concentrations and strong confinement at specific interfaces of the N-and Ga-face pseudomorphic grown heterostructures can be explained as a consequence of interface charges induced by piezoelectric and spontaneous polarization effects.
Two dimensional electron gases in AlxGa1−xN/GaN based heterostructures, suitable for high electron mobility transistors, are induced by strong polarization effects. The sheet carrier concentration and the confinement of the two dimensional electron gases located close to the AlGaN/GaN interface are sensitive to a large number of different physical properties such as polarity, alloy composition, strain, thickness, and doping of the AlGaN barrier. We have investigated these physical properties for undoped and silicon doped transistor structures by a combination of high resolution x-ray diffraction, atomic force microscopy, Hall effect, and capacitance–voltage profiling measurements. The polarization induced sheet charge bound at the AlGaN/GaN interfaces was calculated from different sets of piezoelectric constants available in the literature. The sheet carrier concentration induced by polarization charges was determined self-consistently from a coupled Schrödinger and Poisson equation solver for pseudomorphically and partially relaxed barriers with different alloy compositions. By comparison of theoretical and experimental results, we demonstrate that the formation of two dimensional electron gases in undoped and doped AlGaN/GaN structures rely both on piezoelectric and spontaneous polarization induced effects. In addition, mechanisms reducing the sheet carrier concentrations like nonabrupt interfaces, dislocations, and the possible influence of surface states on the two dimensional electron gases will be discussed briefly.
The macroscopic nonlinear pyroelectric polarization of wurtzite Al x Ga 1−x N, In x Ga 1−x N and Al x In 1−x N ternary compounds (large spontaneous polarization and piezoelectric coupling) dramatically affects the optical and electrical properties of multilayered Al(In)GaN/GaN hetero-, nanostructures and devices, due to the huge built-in electrostatic fields and bound interface charges caused by gradients in polarization at surfaces and heterointerfaces. Models of
A model to explain the observed low transverse mobility in GaN by scattering of electrons at charged dislocation lines is proposed. Filled traps along threading dislocation lines act as Coulomb scattering centers. The statistics of trap occupancy at different doping levels are investigated. The theoretical transverse mobility from Coulomb scattering at charged traps is compared to experimental data. Due to the repulsive potential around the charged dislocation lines, electron transport parallel to the dislocations is unaffected by the scattering at charged dislocation lines.
The lateral transport in GaN films produced by electron cyclotron resonance plasma-assisted molecular beam epitaxy doped n type with Si to the levels of 1015–1020 cm−3 was investigated. The room temperature electron mobility versus carrier concentration was found to follow a family of bell-shaped curves consistent with a recently proposed model of scattering by charged dislocations. The mechanism of this scattering was investigated by studying the temperature dependence of the carrier concentration and electron mobility. It was found that in the low carrier concentration region (<1017 cm−3), the electron mobility is thermally activated with an activation energy half of that of carrier concentration. This is in agreement with the prediction of the dislocation model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.