Transient electron transport and velocity overshoot in wurtzite GaN, InN, and AlN are examined and compared with that which occurs in GaAs. For all materials, we find that electron velocity overshoot only occurs when the electric field is increased to a value above a certain critical field, unique to each material. This critical field is strongly dependent on the material, about 4 kV/cm for the case of GaAs but much higher for the III–nitride semiconductors: 140 kV/cm for GaN, 65 kV/cm for InN, and 450 kV/cm for AlN. We find that InN exhibits the highest peak overshoot velocity and that this velocity overshoot lasts over the longest distances when compared with GaN and AlN. Finally, using a one-dimensional energy–momentum balance approach, a simple model is used to estimate the cutoff frequency performance of nitride based heterojunction field effect transistors (HFETs) and a comparison is made to recently fabricated AlGaN/GaN HFETs.
An elementary empirical model for the distribution of electronic states of an amorphous semiconductor is presented. Using this model, we determine the functional form of the optical absorption spectrum, focusing our analysis on the joint density of states function, which dominates the absorption spectrum over the range of photon energies we consider. Applying our optical absorption results, we then determine how the empirical measures commonly used to characterize the absorption edge of an amorphous semiconductor, such as the Tauc gap and the absorption tail breadth, are related to the parameters that characterize the underlying distribution of electronic states. We, thus, provide the experimentalist with a quantitative means of interpreting the physical significance of their optical absorption data.
We present the velocity-field characteristics of wurtzite indium nitride, determined using an ensemble Monte Carlo approach. It is found that indium nitride exhibits an extremely high peak drift velocity at room temperature, 4.3×107 cm/s, at a doping concentration of 1.0×1017 cm−3. We also demonstrate that the saturation drift velocity of indium nitride, 2.5×107 cm/s, is comparable to that of gallium nitride, and much larger than that of gallium arsenide. Our results suggest that the transport characteristics of indium nitride are superior to those of gallium nitride and gallium arsenide, over a wide range of temperatures, from 150 to 500 K, and doping concentrations, up to 1.0×1019 cm−3. Hence, indium nitride has considerable potential for device applications.
Using time-resolved photoluminescence spectroscopy, we show that two-exciton Auger recombination dominates carrier recombination and cooling dynamics in CdSe nanoplatelets, or colloidal quantum wells. The electron-hole recombination rate depends only on the number of electron-hole pairs present in each nanoplatelet, and is consistent with a two-exciton recombination process over a wide range of exciton densities. The carrier relaxation rate within the conduction and valence bands also depends only on the number of electron-hole pairs present, apart from an initial rapid decay, and is consistent with the cooling rate being limited by reheating due to Auger recombination processes. These Auger-limited recombination and relaxation dynamics are qualitatively different from the carrier dynamics in either colloidal quantum dots or epitaxial quantum wells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.