No abstract
The perirhopalial tissue and swimming muscle of Cyanea were examined with light microscopical and electron microscopical techniques. The perirhopalial tissue is a thin, triangular septum found on the subumbrellar surface of the animal. It separates part of the gastric canal system from the surrounding seawater, and is bound on two sides by radial muscle bands and on the third, the shorter side, by a rhopalium and the margin of the bell. The ectoderm of the perirhopalial tissue is composed of large, somewhat cuboidal, vacuolated, myoepithelial cells. The muscle tails of these cells form a single layer of radial, smooth muscle. Neurons of the "giant fiber nerve net" (GFNN), which form an extensive net over the perirhopalial tissue, lie at the base of the vacuolated portion of the myoepithelial cells. These neurons are visible in living tissue. The morphology of individual GFNN neurons was examined following intracellular injection of the fluorescent dye Lucifer Yellow. The neurons are usually bipolar and free of branches. At the electron microscope level, one usually finds that the GFNN neurons contain large vacuoles. The other characteristic feature of these cells is that they form symmetrical, or nonpolarized, synapses; that is, synaptic vesicles are found on both sides of the synapse. The swimming muscle is striated and composed of myoepithelial cells. Each myoepithelial cell has several muscle tails, and those of adjacent cells are linked to gether by desmosomes. The endoderm of the perirhopalial tissue also was examined. This investigation of the organization and ultrastructure of the perirhopalial tissue and surrounding muscle was undertaken to provide essential background information for an ongoing physiological study of the GFNN neurons and their synapses.
Neurons of the motor nerve net of the jellyfish Cyanea were impaled with microelectrodes for intracellular recordings. The cells have conventional, negative resting potentials and produce variable-amplitude action potentials with complex waveforms. The variability and complexity of these spikes is due to the superimposition of two classes of Ca2+-dependent potentials on an otherwise fast, clean action potential. Repetitive stimulation and ionic manipulation reveal that most superimposed potentials are chemically induced excitatory postsynaptic potentials (EPSPs). These account for the complexity and variability of the action potential. The remaining potential is interpreted as a Ca2+ component of the action potential. The action potential is a Na+-dependent but tetrodotoxin- (TTX) insensitive event. Repolarization is achieved by two pharmacologically distinct mechanisms: a tetraethylammonium- (TEA) and 4-amino-pyridine- (4-AP) sensitive K+ efflux and a delayed, Ca2+-activated, K+ efflux. The latter is responsible for the afterhyperpolarization that follows the action potential. The results indicated that these neurons are physiologically conventional. This is interesting in view of the phylogenetic primitiveness of the preparation and important, since it means that this preparation can provide generally useful information on chemical synaptic physiology.
1. Electrical correlates of behavioral activity were observed in the lip and tentacles of the polyp, but none were detected during column contraction. The tentacles are the most electrically active tissue, and the potentials are conducted along the length of the tentacle, but conduction to other parts of the animal were not observed. 2. Although the tentacles of the polyp and the rhopalia of the medusa are probably homologous, the development of pacemaker activity during strobilation is not a smooth transition from tentacle contraction potentials (TCPs) to marginal ganglion potentials (MGPs). This result indicates that each pacemaker activity develops de novo. 3. Two types of behavior were observed in the polyp: local responses, and coordinated activity which involved integrated responses in several body parts. The coordinated responses indicate that neurological coordination can take place in the polyp. Furthermore, feeding and spasm in the ephyra are similar to feeding and the protective response in the polyp. This similarity suggests that both coordinated responses in the polyp are coordinated by interneural facilitation in the diffuse nerve net (DNN) as in the ephyra. 4. Swimming in the ephyra is a medusoid behavior but feeding and spasm are coordinated by the DNN and are polypoid responses. Therefore, the ephyra is a mixture of polypoid and medusoid behaviors. As the ephyra matures into an adult medusa both polypoid responses are lost, but the DNN remains to modulate pacemaker output and control marginal tentacle contractions. As development proceeds from polyp, to ephyra, to medusa, each subsequent stage acquires some new behavior while retaining some aspect from the previous stage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.