Ignition requires precisely controlled, high convergence implosions to assemble a dense shell of deuterium-tritium (DT) fuel with ρR>∼1 g/cm2 surrounding a 10 keV hot spot with ρR ∼ 0.3 g/cm2. A working definition of ignition has been a yield of ∼1 MJ. At this yield the α-particle energy deposited in the fuel would have been ∼200 kJ, which is already ∼10 × more than the kinetic energy of a typical implosion. The National Ignition Campaign includes low yield implosions with dudded fuel layers to study and optimize the hydrodynamic assembly of the fuel in a diagnostics rich environment. The fuel is a mixture of tritium-hydrogen-deuterium (THD) with a density equivalent to DT. The fraction of D can be adjusted to control the neutron yield. Yields of ∼1014−15 14 MeV (primary) neutrons are adequate to diagnose the hot spot as well as the dense fuel properties via down scattering of the primary neutrons. X-ray imaging diagnostics can function in this low yield environment providing additional information about the assembled fuel either by imaging the photons emitted by the hot central plasma, or by active probing of the dense shell by a separate high energy short pulse flash. The planned use of these targets and diagnostics to assess and optimize the assembly of the fuel and how this relates to the predicted performance of DT targets is described. It is found that a good predictor of DT target performance is the THD measurable parameter, Experimental Ignition Threshold Factor, ITFX ∼ Y × dsf 2.3, where Y is the measured neutron yield between 13 and 15 MeV, and dsf is the down scattered neutron fraction defined as the ratio of neutrons between 10 and 12 MeV and those between 13 and 15 MeV.
The National Ignition Facility (NIF) i,ii at Lawrence Livermore National Laboratory is a 192 beam, 1.8 MJ 0.35 µm laser designed to drive inertial confinement fusion (ICF) capsules to ignition iii. NIF was formally dedicated in May 2009. The National Ignition Campaign, a collaborative research undertaking by LLNL, LLE, LANL, GA, and SNL, has a goal of achieving a robust burning plasma by the end of 2012. In the indirect-drive approach iv , the laser energy is converted to thermal x-rays inside a high Z cavity (hohlraum). The x rays then ablate the outer layers of a DT-filled capsule placed at the center of the hohlraum, causing the capsule to implode, compress and heat the DT and ignite.
The National Ignition Facility (NIF) successfully completed its first inertial confinement fusion (ICF) campaign in 2009. A neutron time-of-flight (nTOF) system was part of the nuclear diagnostics used in this campaign. The nTOF technique has been used for decades on ICF facilities to infer the ion temperature of hot deuterium (D(2)) and deuterium-tritium (DT) plasmas based on the temporal Doppler broadening of the primary neutron peak. Once calibrated for absolute neutron sensitivity, the nTOF detectors can be used to measure the yield with high accuracy. The NIF nTOF system is designed to measure neutron yield and ion temperature over 11 orders of magnitude (from 10(8) to 10(19)), neutron bang time in DT implosions between 10(12) and 10(16), and to infer areal density for DT yields above 10(12). During the 2009 campaign, the three most sensitive neutron time-of-flight detectors were installed and used to measure the primary neutron yield and ion temperature from 25 high-convergence implosions using D(2) fuel. The OMEGA yield calibration of these detectors was successfully transferred to the NIF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.