Elk Cervus canadensis nelsoni in the Black Hills, South Dakota, have been declining since 2006 and there is concern by resource managers and hunters that puma Puma concolor predation may be contributing to declining herds. We evaluated characteristics at sites where puma successfully killed elk in the Black Hills of South Dakota. We evaluated characteristics at coarse (79-ha plots) and fine (0.2-ha plot) scales across the landscape. Our primary objective was to obtain a better understanding of vegetation and terrain characteristics that may have facilitated greater susceptibility of elk to predation by puma. We evaluated effects of road density, terrain heterogeneity, probability of elk use, and vegetation variables at 62 puma kill sites of elk and 186 random sites to identify key landscape attributes where elk were killed by puma. Elk were killed by puma in high use areas. Elk were also killed in areas that had greater amounts of edge and intermediate ruggedness at the coarse scale. Further, elk were killed in areas with greater small tree density and woody debris at the fine scale. High germination rates of ponderosa pine trees are unique to the Black Hills and provide dense patches of cover for puma. We hypothesize that cover from small trees and woody debris provided conditions where puma could stalk elk in areas with optimal security cover for elk. We suggest managers implement vegetation management practices that reduce small tree density and woody debris in areas with greater density of meadow-forest edge if they are interested in potentially diminishing hiding cover for puma in elk high use areas.
The loss of aquatic subsidies such as spawning salmonids is known to threaten a number of terrestrial predators, but the effects on alternative prey species are poorly understood. At the heart of the Greater Yellowstone ecosystem, an invasion of lake trout has driven a dramatic decline of native cutthroat trout that migrate up the shallow tributaries of Yellowstone Lake to spawn each spring. We explore whether this decline has amplified the effect of a generalist consumer, the grizzly bear, on populations of migratory elk that summer inside Yellowstone National Park (YNP). Recent studies of bear diets and elk populations indicate that the decline in cutthroat trout has contributed to increased predation by grizzly bears on the calves of migratory elk. Additionally, a demographic model that incorporates the increase in predation suggests that the magnitude of this diet shift has been sufficient to reduce elk calf recruitment (4-16%) and population growth (2-11%). The disruption of this aquatic-terrestrial linkage could permanently alter native species interactions in YNP. Although many recent ecological changes in YNP have been attributed to the recovery of large carnivores-particularly wolves-our work highlights a growing role of human impacts on the foraging behaviour of grizzly bears.
Migratory behavior in ungulates has declined globally and understanding the causative factors (environmental change vs. human mediated) is needed to formulate effective management strategies. In the Jackson elk herd of northwest Wyoming, demographic differences between summer elk (Cervus elaphus) population segments have led to changes in migratory patterns over a 35-year time period. The proportion of short-distance migrants (SDM) has increased and the proportion of long-distance migrants (LDM) has concurrently declined. The probability of winter-captured elk on the National Elk Refuge being LDM decreased from 0.99 (95% CI ¼ 0.97-1.00) to 0.59 (95% CI ¼ 0.47-0.70) from 1978 to 2012. We tested 4 hypotheses that could contribute toward the decline in the LDM segment: behavioral switching from LDM to SDM, differential survival, harvest availability, and calf recruitment. Switching rates from LDM to SDM were very low (0.2% each elk-year). Survival rates were similar between LDM and SDM, although harvest availability was relatively low for SDM that tended to use areas close to human development during the hunting season. Average summer calf/cow ratios of LDM declined from 42 to 23 calves per 100 cows from 1978 -2012 . Further, during 2006 -2012, LDM summer calf/cow ratios were less than half of SDM (23 vs. 47 calves per 100 cows). Our data suggest recruitment is the driving factor behind the declining proportion of LDM in this region. Effectiveness of altering harvest management strategies to conserve the LDM portion of the Jackson elk herd may be limited. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.
While the tendency to return to previously visited locations—termed ‘site fidelity’—is common in animals, the cause of this behaviour is not well understood. One hypothesis is that site fidelity is shaped by an animal's environment, such that animals living in landscapes with predictable resources have stronger site fidelity. Site fidelity may also be conditional on the success of animals’ recent visits to that location, and it may become stronger with age as the animal accumulates experience in their landscape. Finally, differences between species, such as the way memory shapes site attractiveness, may interact with environmental drivers to modulate the strength of site fidelity. We compared inter‐year site fidelity in 669 individuals across eight ungulate species fitted with GPS collars and occupying a range of environmental conditions in North America and Africa. We used a distance‐based index of site fidelity and tested hypothesized drivers of site fidelity using linear mixed effects models, while accounting for variation in annual range size. Mule deer Odocoileus hemionus and moose Alces alces exhibited relatively strong site fidelity, while wildebeest Connochaetes taurinus and barren‐ground caribou Rangifer tarandus granti had relatively weak fidelity. Site fidelity was strongest in predictable landscapes where vegetative greening occurred at regular intervals over time (i.e. high temporal contingency). Species differed in their response to spatial heterogeneity in greenness (i.e. spatial constancy). Site fidelity varied seasonally in some species, but remained constant over time in others. Elk employed a ‘win‐stay, lose‐switch’ strategy, in which successful resource tracking in the springtime resulted in strong site fidelity the following spring. Site fidelity did not vary with age in any species tested. Our results provide support for the environmental hypothesis, particularly that regularity in vegetative phenology shapes the strength of site fidelity at the inter‐annual scale. Large unexplained differences in site fidelity suggest that other factors, possibly species‐specific differences in attraction to known sites, contribute to variation in the expression of this behaviour. Understanding drivers of variation in site fidelity across groups of organisms living in different environments provides important behavioural context for predicting how animals will respond to environmental change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.