A new algorithm called the self-organizing neural network (SONN) is introduced. Its use is demonstrated in a system identification task. The algorithm constructs a network, chooses the node functions, and adjusts the weights. It is compared to the backpropagation algorithm in the identification of the chaotic time series. The results show that SONN constructs a simpler, more accurate model, requiring less training data and fewer epochs. The algorithm can also be applied as a classifier.
A central problem in classifier design is the estimation of classification error. The difficulty in classifier design arises in situations where the sample distribution is unknown and the number of training samples available is limited. In this paper, We present a new approach for solving this problem. In our model, there are two types of classification error: approximation and generalization error. The former is due to the imperfect knowledge of the underlying sample distribution, while the latter is mainly the result of inaccuracies in parameter estimation, which is a consequence of the small number of training samples. We therefore propose a criterion for optimal classifier selection, called the Generalized Minimum Empirical Criterion (GMEE). The GMEE criterion consists of two terms, corresponding to the estimates of two types of error. The first term is the empirical error, which is the classification error observed for the training samples. The second is an estimate of the generalkation error, which is related to the classifier complexity. In this paper we consider the Vapnik-Chervonenkis dimension (VCdim) as a measure of classifier complexity. Hence, the classifier which minimizes the criterion is the one with minimal error probability. Bayes consistency of the GMEE criterion has been proven.As an application, the criterion is used to design the optimal neural network classifier. A corollary to the Bayes optimality of neural network-based classifiers has been proven. Thus, our approach provides a theoretic foundation for the connectionist approach to optimal classifier design. Experimental results are given to validate the approach, followed by discussions and suggestions for future research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.