The complex refractive index components, n and k, have been studied for thin films of several common dielectric materials with a low to medium refractive index as functions of wavelength and stoichiometry for mid-infrared (MIR) wavelengths within the range 1.54-14.29 μm (700-6500 cm(-1)). The materials silicon oxide, silicon nitride, aluminum oxide, aluminum nitride, and titanium oxide are prepared using room temperature reactive sputter deposition and are characterized using MIR variable angle spectroscopic ellipsometry. The investigation shows how sensitive the refractive index functions are to the O2 and N2 flow rates, and for which growth conditions the materials deposit homogeneously. It also allows conclusions to be drawn on the degree of amorphousness and roughness. To facilitate comparison of the materials deposited in this work with others, the index of refraction was also determined and provided for the near-IR and visible ranges of the spectrum. The results presented here should serve as a useful information base for designing optical coatings for the MIR part of the electromagnetic spectrum. The results are parameterized to allow them to be easily used for coating design.
We demonstrate second harmonic generation in photonic crystal nanocavities fabricated in the semiconductor gallium phosphide. We observe second harmonic radiation at 750 nm with input powers of only nanowatts coupled to the cavity and conversion effciency P(out)/P(2)(in,coupled)=430%/W. The large electronic band gap of GaP minimizes absorption loss, allowing effcient conversion. Our results are promising for integrated, low-power light sources and on-chip reduction of input power in other nonlinear processes.
A theory based on the Bardeen formalism is developed for computing the tunnel current between a metal tip and a semiconductor surface. Tip-induced band bending in the semiconductor is included, with the electrostatic potential computed in a fully threedimensional model whereas the tunnel current is computed in the limit of large tip radii. Localized states forming at the semiconductor surface as well as wavefunction tailing through the semiconductor depletion region are fully accounted for. Numerical results are provided and compared with data obtained from p-type GaAs surfaces, and generalization of the method to semiconductor heterojunctions is discussed.Published in Nanotechnology 18, 044015 (2007).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.