In this paper, we report the synthesis of high-quality Ta2Ni3Se8 single crystals free of noble or toxic elements and the fabrication and testing of photodetectors on the wire samples. A broadband photoresponse from 405 nm to 1550 nm is observed, along with remarkable performance parameters including relatively high photoresponsivity (10 mA W-1) and specific detectivity (3.5 × 107 Jones) and comparably short response time (τrise = 433 ms, τdecay = 372 ms) for 1064 nm, 0.5 V bias and 1.352 mW mm-2. Through extensive measurement and analysis, it is determined that the dominant mechanism for photocurrent generation is the photo-bolometric effect, which is believed to be responsible for the very broad spectral detection capability. More importantly, the pronounced response to 1310 nm and 1550 nm wavelengths manifests its promising applications in optical communications. Considering the quasi-one-dimensional structure with layered texture, the potential to build nanodevices on Ta2Ni3Se8 makes it even more important in future electronic and optoelectronic applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.