1. The low-molecular-weight components of myosin freshly prepared by the standard procedure from adult rabbit skeletal muscle migrated as four main bands Ml(1), Ml(2), Ml(3) and Ml(4) on polyacrylamide-gel electrophoresis in 8m-urea. 2. The number of bands increased on storage. This change was accelerated by increasing the temperature and pH. 3. None of the bands had electrophoretic mobilities identical with those of the well-characterized proteins of the myofibril or with the sarcoplasmic proteins. 4. By varying the ionic conditions and concentration of muscle mince used for the initial extraction it was possible to change the relative proportions of the two electrophoretic bands of intermediate mobility, Ml(2) and Ml(3). 5. The four-band picture similar to that obtained with rabbit was observed with myosin isolated from skeletal muscle of the rat, mouse, hamster, pigeon and chicken. 6. Rabbit cardiac myosin gave only two bands on electrophoresis. Myosin from rabbit red muscle gave a pattern intermediate between cardiac and white-skeletal-muscle myosin, i.e. the two fastest bands were present in decreased relative amounts. 7. It is suggested that the differences in the low-molecular-weight components of myosin from different types of muscle are a consequence of differences in the isoenzyme composition of the myosins.
1. The low-molecular-weight components of myosin from rabbit skeletal muscle migrated as four bands on polyacrylamide-gel electrophoresis in 8m-urea but only as three in systems containing sodium dodecyl sulphate. The two bands of intermediate mobility in 8m-urea (Ml(2) and Ml(3)) had identical mobilities in sodium dodecyl sulphate. 2. The isolation of pure samples of all four low-molecular-weight components by DEAE-Sephadex chromatography is described. 3. The amino acid compositions of components Ml(2) and Ml(3) were identical. Further analyses showed the presence of 1 mol of phosphate/18500g of component Ml(2) and less than 10% of this amount in component Ml(3). Neither light component contained ribose. 4. Alkaline phosphatase from Escherichia coli converted component Ml(2) into Ml(3). Incubation with crude preparations of phosphorylase b kinase or protein kinase in the presence of ATP converted component Ml(3) into Ml(2). 5. Phosphorylation of component Ml(3) with the kinases isolated from skeletal muscle and [gamma-(32)P]ATP gave incorporation of (32)P only into component Ml(2) whether whole myosin or separated low-molecular-weight components were used. 6. High-voltage electrophoresis at pH6.5 and pH1.8 of a chymotryptic digest of (32)P-labelled component Ml(2) yielded one major radioactive peptide containing serine phosphate. 7. The amino acid sequence of this peptide was shown to be: Arg-Ala-Ala-Ala-Glu-Gly-Gly-(Ser,Ser(P))-Asn-Val-Phe. This sequence shows no obvious similarity to the site phosphorylated in the conversion of phosphorylase b into phosphorylase a by phosphorylase b kinase. 8. Evidence suggests that in vivo all the 18500-molecular-weight light chain is in the phosphorylated form. The extent of dephosphorylation that occurred during myosin extraction depended on the conditions employed.
The low-molecular-weight components of myosin from rabbit skeletal muscle migrated as four bands on polyacrylamide-gel electrophoresis in 8 M-urea but only as three in systems containing sodium dodecyl sulphate. The two bands of intermediate mobility in 8M-urea (M12 and M13) had identical mobilities in sodium dodecyl sulphate. 2. The isolation of pure samples of all four low-molecular-weight components by DEAE-Sephadex chromatography is described. 3. The amino acid compositions of components M12 and M13 were identical. Further analyses showed the presence of 1 mol of phosphate/18 500g of component M12 and less than 10% of this amount in component M13. Neither light component contained ribose. 4. Alkaline phosphatase from Escherichia coli converted component M12 into M13. Incubation with crude preparations of phosphorylase b kinase or protein kinase in the presence of ATP converted component M13 into M12. 5. Phosphorylation of component M13 with the kinases isolated from skeletal muscle and [y-32P]ATP gave incorporation of 32p only into component M12 whether whole myosin or separated low-molecular-weight components were used. 6. High-voltage electrophoresis at pH6.5 and pH 1.8 of a chymotryptic digest of 32P-labelled component M12 yielded one major radioactive peptide containing serine phosphate. 7. The amino acid sequence of this peptide was shown to be: Arg-Ala-Ala-Ala-Glu-Gly-Gly-(Ser,Ser(P))-Asn-Val-Phe. This sequence shows no obvious similarity to the site phosphorylated in the conversion of phosphorylase b into phosphorylase a by phosphorylase b kinase. 8. Evidence suggests that in vivo all the 18 500-molecular-weight light chain is in the phosphorylated form. The extent of dephosphorylation that occurred during myosin extraction depended on the conditions employed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.