[2-14C]urate uptake was examined in proteoliposomes prepared with phosphatidylcholine and either pig liver uricase or albumin, and in protein-free liposomes. Urate uptake was only evident in proteoliposomes that contained active uricase. Uptakes were indistinguishable in the presence and absence of inwardly directed gradients of sodium, potassium, or choline chloride or outwardly directed hydroxyl gradients. Both urate and allantoin accumulated within proteoliposomes during urate uptake; however, [2-14C]allantoin was not taken up by proteoliposomes. Urate uptake was accelerated in the presence of unlabeled urate in the trans position, saturable, and competitively inhibited by oxonate, findings consistent with carrier-mediated transport. Finally, the kinetics of urate uptake and oxidation were virtually identical, implying that the transporter is uricase. Thus, these studies provide evidence that uricase can function as a transport protein for urate when inserted in a lipid bilayer: transport via uricase is neither cation dependent (not a cotransporter) nor dependent on an exchangeable anion (not a urate/anion exchanger). Additionally, these studies demonstrate that neither urate nor allantoin cross lipid bilayers by simple or nonionic diffusion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.