Ceratothripoides claratris, the predominant thrips species on tomato in Thailand, was tested for vector competence and efficiency to transmit Capsicum chlorosis virus (CaCV) (isolate AIT) to tomato. The efficiency of adult-stage transmission was influenced by the larval stage at which virus was acquired. Adult C. claratris showed 69% transmission efficiency after acquiring the virus as freshly emerged (<1 h) first-instar larvae. However, when just molted (<1 h) second-instar larvae acquired the virus, the percentage of adult transmitters significantly decreased (48%). Transmission efficiency of up to 47% was detected with second-instar larvae of C. claratris which had acquired the virus as freshly emerged first-instar larvae. Transmission efficiency did not significantly differ between adult males and females, irrespective of the larval stage at which the virus was acquired. Highest transmission efficiency for CaCV was recorded in adult C. claratris derived from second-instar larvae collected from infected tomato plants in a greenhouse. Lowest transmission efficiency was observed in adults directly collected from infected tomato plants in the greenhouse. The spread of CaCV on tomato plants in greenhouses showed a close association with thrips infestations.
Ceratothripoides claratris (Shumsher) is a serious pest attacking tomatoes in Thailand. Temperature-dependent development of C. claratris was studied at seven constant temperatures, i.e. 22, 25, 27, 30, 34, 35 and 40°C. Pre-adult survivorship was greatest (95%) at 25 and 30°C and shortest at 22°C. Egg-to-adult time decreased within the range of 20 to 30°C and at 34°C it started to increase. The lower thermal threshold for egg-to-adult development was estimated at 16 and 18°C by linear regression and the modified Logan model, respectively. The optimum temperature for egg-to-adult development was estimated at 32-33°C by the modified Logan model. The influence of temperature on reproduction and longevity of C. claratris was determined at 25, 30 and 35 and 40°C. Both inseminated and virgin females failed to reproduce at 40°C. Virgin females produced only male offspring, confirming arrhenotoky. The sex ratio of the offspring of fertilized females was strongly female-biased, except at 25°C. Mean total fecundity per female and mean daily total fecundity per female were highest for both virgin and inseminated females at 30°C. Female longevity was longest at 25°C and shortest at 40°C. Male longevity was longest at 30°C and shortest at 40°C. The net reproductive rate (R 0 ) and intrinsic rate of natural increase (r m ) was greatest at 30°C while, mean generation time (G) and the doubling time (t) were highest at 25°C. The finite rate of increase (λ) was fairly constant (1.1-1.5 days) over the three temperatures tested. The pest potential of C. claratris for tropical Asia is discussed.
Globally, Maruca vitrata (Geyer) is a serious yield constraint on food legumes including Yard-long bean (Vigna unguiculata subspecies sesquipedalis). However, there is a dearth of information on its damage potential, distribution and population dynamics in Yard-long beans. In the present study, the level of M. vitrata larval infestation on flowers and pods of Yard-long beans in Sri Lanka was determined with respect to three consecutive cropping seasons, Yala, Off and Maha. Results indicated that larval infestation and abundance varied with developmental stage of flowers and pods, cropping season and their combined interactive effects. Flowers of Yard-long beans were more prone to M. vitrata larval attack compared to pods. Abundance and level of infestation of M. vitrata varied with plant parts, having a ranking of flower buds (highest) > open flowers > mature pods > immature pods (lowest). Peak infestation was observed six and eight weeks after planting on flowers and pods, respectively. Among the three cropping seasons, M. vitrata infestation was found to be higher during Maha and Off seasons compared to Yala. The findings of this study contribute to the identified knowledge gap regarding the field biology of an acknowledged important pest, M. vitrata, in a previously understudied crop in Sri Lanka.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.