We have shown recently that mouse Th1 cells but not Th2 cells are selectively recruited into inflamed sites of a delayed-type hypersensitivity (DTH) reaction of the skin. This migration was blocked by monoclonal antibodies (mAb) against P- and E-selectin. Here we show that Th1 cells bind to P-selectin via the P-selectin glycoprotein ligand-1 (PSGL-1). This is the only glycoprotein ligand that was detectable by affinity isolation with a P-selectin–Ig fusion protein. Binding of Th1 cells to P-selectin, as analyzed by flow cytometry and in cell adhesion assays, was completely blocked by antibodies against PSGL-1. The same antibodies blocked partially the migration of Th1 cells into cutaneous DTH reactions. This blocking activity, in combination with that of a mAb against E-selectin, was additive. PSGL-1 on Th2 cells, although expressed at similar levels as on Th1 cells, did not support binding to P-selectin. Thus, the P-selectin–binding form of PSGL-1 distinguishes Th1 cells from Th2 cells. Furthermore, PSGL-1 is relevant for the entry of Th1 cells into inflamed areas of the skin. This is the first demonstration for the importance of PSGL-1 for mouse leukocyte recruitment in vivo.
Lymphocyte differentiation is connected with profound alterations in the migratory pattern of lymphocytes. Whereas naive cells predominantly recirculate through lymphoid tissues, activated lymphocytes acquire an increased preference for immigration into non-lymphoid tissues and a reduced capacity for recirculation via high endothelial venules (HEV). A variety of data had indicated that memory-related subpopulations of cells in man and sheep, classified by the low expression of the CD45RA isotype, also lack the capacity to recirculate via HEV. However, recent data in the rat called these results into question. We therefore analyzed the migration properties of murine CD4+ T cell subpopulations defined by several markers used to distinguish memory from naive CD4+ cells in mice, namely CD45RB, L-selectin and CD44. Our data clearly show that the majority of putative memory cells expressing either low levels of CD45RB, low levels of L-selectin or high levels of CD44 display a strongly reduced capacity for direct entry into lymphoid tissues, including the spleen, from the blood stream. The accumulation in peripheral lymph nodes is further reduced by treatment with anti-L-selectin antibody, which blocks their entry via HEV. This indicates that memory CD4+ T cells are not excluded from crossing lymph node HEV, and that the numbers of cells entering the node via this route exceed the numbers entering via the afferent lymph, at least in the absence of local inflammation. Concomitantly, a strongly enhanced localization of cells of the memory phenotype is observed in lung and liver as compared with naive cells. Trafficking to specific sites such as skin or gut mucosa is not a prominent feature of the total population of memory cells. The trafficking to lung and liver and an increased ability to bind to dendritic cells, demonstrable in in vitro adhesion assays, suggest a more sessile phenotype of most memory cells. With respect to these properties, memory cells have a surprizing similarity to fully activated lymphocytes.
The effect of different potassium, calcium and magnesium concentrations in the perfusate on the hormone secretion of the isolated dog pancreas was investigated. A potassium concentration above 15 mMol/l shortly stimulates the insulin and glucagon secretion. Potassium ions (greater than or equal to 15 mMol/l) completely inhibit the early phase of glucose-induced insulin release. At a low Ca2+-level (0.25 mMol/l) the glucose-stimulated insulin secretion is reduced to basal values. On the other hand, the glucagon release is stimulated under these conditions. An increase of magnesium ions from 1.0 mMol/l to 2.5-7.5 mMol/l strikingly inhibits insulin and glucagon release by approximately 50%, which is compensated for insulin by increasing the Ca2+-content of the medium. Perfusates for normothermic pancreas perfusion should contain electrolyte concentrations within the physiological range.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.