Large mammalian carnivores are threatened by anthropogenic environmental impacts, particularly through habitat loss which often cause population declines. Understanding the extent of suitable habitat is therefore of great importance for carnivore conservation. The leopard (Panthera pardus) is a widespread and relatively common large carnivore, but the species is declining in large parts of its range. Using maximum entropy-based habitat models, we estimated the extent of suitable leopard habitat in South Africa, what variables that are associated with suitable leopard habitats, the extent of habitat that has been negatively impacted by human activity and the effectiveness of protected areas to capture suitable habitat. Suitable leopard habitat was highly fragmented. Although vegetation and physical variables were the most influential variables for habitat suitability, livestock farming primarily seem to underlie fragmentation. We suggest that the sustainability of the South African leopard population depends on maintaining dispersal routes between areas with suitable habitat. This will require mitigation of human-carnivore conflict in habitat corridors, particularly mitigation strategies targeting conflict between carnivores and livestock farmers. Because most suitable habitat occurred outside of protected areas, we also recommend that leopard conservation efforts should focus on areas that are not legally protected.
As a result of pioneering work of Hofmann (1973, 1989), nutritional ecologists classify ruminants into three feeding-type categories: browsers ("concentrate" feeders), grazers, and intermediate or mixed feeders. Hofmann proposed that these feeding types result from evolutionary adaptations in the anatomy of the digestive system and that one consequence is shorter retention of the digesta in the rumen of browsers, and thus a decreased efficiency of fiber digestion relative to that of grazers. We examined the hypotheses that (1) fiber digestion of browsers is lower than that of grazers, (2) salivary gland size is larger in all browsers than in grazers, (3) the browser's larger salivary glands produce larger volumes of thin serous saliva than those of grazers, and (4) thus, browsers have higher liquid passage rates than do grazers. We found that the extent of fiber digestion is not significantly different between browsers and grazers, although fiber digestion is positively related to herbivore size. In general, salivary gland size is approximately 4 times larger in browsers than grazers, but some browsers (e.g., greater kudu) have small, grazer-sized salivary glands. Resting (non-feeding or ruminating) saliva flow rates of mule deer (browser) and domestic sheep and cattle (grazers) were not significantly different from each other. Finally, ruminal liquid flow rates were not different between feeding types. We conclude that many of Hofmann's nutritional and physiological interpretations of anatomical differences amongst ruminants are not supportable.
Estimation of survival rates is important for developing and evaluating conservation options for large carnivores. However, telemetry studies for large carnivores are often characterized by small sample sizes that limit meaningful conclusions. We used data from 10 published and 8 unpublished studies of leopards Panthera pardus in southern Africa to estimate survival rates and investigate causes of leopard mortality. Mean survival rates were significantly lower in non-protected (0.55 ± SE 0.08) compared to protected areas (0.88 ± 0.03). Inside protected areas juveniles had significantly lower survival (0.39 ± 0.10) compared to subadults (0.86 ± 0.07) and adults (0.88 ± 0.04).There was a greater difference in cause of death between protected and non-protected areas for females compared to males, with people being the dominant cause of mortality outside protected areas for both females and males. We suggest there is cause for concern regarding the sustainability of leopard populations in South Africa, as high female mortality may have severe demographic effects and a large proportion of suitable leopard habitat lies in non-protected areas. However, because a large proportion of deaths outside protected areas were attributed to deliberate killing by people, we suggest that management interventions may have the potential to increase leopard survival dramatically. We therefore stress the urgency to initiate actions, such as conflict mitigation programmes, to increase leopard survival in non-protected areas.
The apparent decline in the number of Nile crocodiles present in the Loskop Dam prompted a study to determine the number, size and distribution of Nile crocodiles now present in the reservoir. The number of crocodiles in the Loskop Dam was surveyed using aerial counts and spotlight counts. Surveys revealed the presence of a very low total number of crocodiles and also a poor distribution of crocodiles in the different size classes over almost 30 years since 1981. Eight surveys carried out between 2001 and 2010 revealed that the distribution pattern of crocodiles in the Loskop Dam did not vary between winter and summer. These distribution patterns indicate that crocodiles occur most frequently in the eastern and western inlets and not in the main basin of the dam. Thirteen crocodiles were re-introduced into the dam during March 2007; however the August 2009 spotlight survey results indicated that none of these animals had survived.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.