Light is a major environmental signal for circadian rhythms. We have identified and analyzed cry, a novel Drosophila cryptochrome gene. All characterized family members are directly photosensitive and include plant blue light photoreceptors. We show that cry transcription is under circadian regulation, influenced by the Drosophila clock genes period, timeless, Clock, and cycle. We also show that cry protein levels are dramatically affected by light exposure. Importantly, circadian photosensitivity is increased in a cry-overexpressing strain. These physiological and genetic data therefore link a specific photoreceptor molecule to circadian rhythmicity. Taken together with the data in the accompanying paper, we propose that CRY is a major Drosophila photoreceptor dedicated to the resetting of circadian rhythms.
We report the identification, characterization, and cloning of a novel Drosophila circadian rhythm gene, dClock. The mutant, initially called Jrk, manifests dominant effects: heterozygous flies have a period alteration and half are arrhythmic, while homozygous flies are uniformly arrhythmic. Furthermore, these flies express low levels of the two clock proteins, PERIOD (PER) and TIMELESS (TIM), due to low per and tim transcription. Mapping and cloning of the Jrk gene indicates that it encodes the Drosophila homolog of mouse Clock. The mutant phenotype results from a premature stop codon that eliminates much of the putative activation domain of this bHLH-PAS transcription factor, thus explaining the dominant features of Jrk. The remarkable sequence conservation strongly supports common clock components present in the common ancestor of Drosophila and mammals.
Glucose flux through the hexosamine biosynthetic pathway leads to the post-translational modification of cytoplasmic and nuclear proteins by O-linked beta-N-acetylglucosamine (O-GlcNAc). This tandem system serves as a nutrient sensor to couple systemic metabolic status to cellular regulation of signal transduction, transcription, and protein degradation. Here we show that O-GlcNAc transferase (OGT) harbours a previously unrecognized type of phosphoinositide-binding domain. After induction with insulin, phosphatidylinositol 3,4,5-trisphosphate recruits OGT from the nucleus to the plasma membrane, where the enzyme catalyses dynamic modification of the insulin signalling pathway by O-GlcNAc. This results in the alteration in phosphorylation of key signalling molecules and the attenuation of insulin signal transduction. Hepatic overexpression of OGT impairs the expression of insulin-responsive genes and causes insulin resistance and dyslipidaemia. These findings identify a molecular mechanism by which nutritional cues regulate insulin signalling through O-GlcNAc, and underscore the contribution of this modification to the aetiology of insulin resistance and type 2 diabetes.
We report the identification, characterization, and cloning of another novel Drosophila clock gene, cycle (cyc). Homozygous cyc flies are completely arrhythmic. Heterozygous cyc/+ flies are rhythmic but have altered periods, indicating that the cyc locus has a dosage effect on period. The molecular circadian phenotype of homozygous cyc flies is like homozygous Clk flies presented in the accompanying paper: mutant flies have little or no transcription of the per and tim genes. Cloning of the gene indicates that it also encodes a bHLH-PAS transcription factor and is a Drosophila homolog of the human protein BMAL1. cyc is a nonsense mutation, consistent with its strong loss-of-function phenotype. We propose that the CYC:CLK heterodimer binds to per and tim E boxes and makes a major contribution to the circadian transcription of Drosophila clock genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.