Early and precise spatio-temporal monitoring of tree vitality is key for steering management decisions in pome fruit orchards. Spaceborne remote sensing instruments face a tradeoff between spatial and spectral resolution, while manned aircraft sensor-platform systems are very expensive. In order to address the shortcomings of these platforms, this study investigates the potential of Remotely Piloted Aircraft Systems (RPAS) to facilitate rapid, low cost, and flexible chlorophyll monitoring. Due to the complexity of orchard scenery a robust chlorophyll retrieval model on RPAS level has not yet been developed. In this study, specific focus therefore lies on evaluating the sensitivity of retrieval models to confounding factors. For this study, multispectral and hyperspectral imagery was collected over pome fruit orchards. Sensitivities of both univariate and multivariate retrieval models were demonstrated under different species, phenology, shade, and illumination scenes. Results illustrate that multivariate models have a significantly higher accuracy than univariate models as the former provide accuracies for the canopy chlorophyll content retrieval of R2 = 0.80 and Relative Root Mean Square Error (RRMSE) = 12% for the hyperspectral sensor. Random forest regression on multispectral imagery (R2 > 0.9 for May, June, July, and August, and R2 = 0.5 for October) and hyperspectral imagery (0.6 < R2 < 0.9) led to satisfactory high and consistent accuracies for all months.
Yield and quality estimations provide vital information to fruit growers, yet require accurate monitoring throughout the growing season. To this end, the temporal dependency of fruit yield and quality estimations through spectral vegetation indices was investigated in irrigated and rainfed pear orchards. Both orchards were monitored throughout three consecutive growing seasons, including spectral measurements (i.e., hyperspectral canopy reflectance measurements) as well as yield determination (i.e., total yield and number of fruits per tree) and quality assessment (i.e., fruit firmness, total soluble solids and fruit color). The results illustrated a clear association between spectral vegetation indices and both fruit yield and fruit quality (|r| > 0.75; p < 0.001). However, the correlations between vegetation indices and production variables varied throughout the growing season, depending on the phenological stage of fruit development. In the irrigated orchard, index values showed a strong association with production variables near time of
OPEN ACCESSRemote Sens. 2015, 7 9887 harvest (|r| > 0.6; p < 0.001), while in the rainfed orchard, index values acquired during vegetative growth periods presented stronger correlations with fruit parameters (|r| > 0.6; p < 0.001). The improved planning of remote sensing missions during (rainfed orchards) and after (irrigated orchards) vegetative growth periods could enable growers to more accurately predict production outcomes and improve the production process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.