Abstract. Long-term measurements by the AERONET program of spectral aerosol optical depth, precipitable water, and derived Angstrom exponent were analyzed and compiled into an aerosol optical properties climatology. Quality assured monthly means are presented and described for 9 primary sites and 21 additional multiyear sites with distinct aerosol regimes representing tropical biomass burning, boreal forests, midlatitude humid climates, midlatitude dry climates, oceanic sites, desert sites, and background sites. Seasonal trends for each of these nine sites are discussed and climatic averages presented. IntroductionMan is altering the aerosol environment through land cover change, combustion of fossil fuels, and the introduction of particulate and gas species to the atmosphere. Each perturbation has some impact on the local aerosol environment. How much aerosol man is contributing to the atmosphere is not •øUniversity of New Mexico, Albuquerque, New Mexico.•qnstituto de Pesquisas Espaciais, Sao Jose dos Campos, San Paolo, Brazil.•2National Oceanic and Atmospheric Administration, Silver Spring, Maryland.•3Scripps Institute of Oceanography, La Jolla, California.•4Department of Applied Science, Brookhaven National Laboratory, Upton, New York.•SNow at Naval Research Laboratory, Washington, D.C.•6Ben Gurion University of the Negev, Sede Boker, Israel.•7CARTEL, Universit6 de Sherbrooke, Sherbrooke, Quebec, Canada.•sSAIC-GSC, Beltsville, Maryland, and NASA GSFC, Greenbelt, The simplest, and, in principle, the most accurate and easy to maintain monitoring systems are ground based. Aerosol optical depth is the single most comprehensive variable to remotely assess the aerosol burden in the atmosphere from groundbased instruments. This variable is used in local investigations to characterize aerosols, assess atmospheric pollution, and make atmospheric corrections to satellite remotely sensed data. It is for these reasons that a record of aerosol optical depth spanning most of the twentieth century has been measured from Sun photometers. The vast majority are site specific, short-term investigations with little relevance for seasonal, annual, or long-term trend analysis, however a few multiyear spatial studies have contributed to our knowledge and experience (Table 1). The following section reviews these investigations, past and present, which significantly addressed long-term measurements over widely distributed locations or provided a significant contribution that allowed development of a network for long-term photometric aerosol observations. The earliest systematic results come from the Smithsonian Institution solar observatories. Roosen e! al. [1973] computed extinction coefficients from 13 widely separated sites during the first half of the twentieth century using spectrobolometer observations by the Astrophysical Observatory of the Smithsonian Institution. They concluded the aerosol burden did not 12,067
Data from polar-orbiting meteorological satellites have been used to determine the extent of the Sahara Desert and to document its interannual variation from 1980 to 1990. The Sahara Desert ranged from 8,633,000 square kilometers in 1980 to 9,982,000 square kilometers in 1984. The greatest annual north-south latitudinal movement of the southern Saharan boundary was 110 kilometers from 1984 to 1985 and resulted in a decrease in desert area of 724,000 square kilometers.
[1] Long-term monitoring of aerosol optical properties at a boreal forest AERONET site in interior Alaska was performed from 1994 through 2008 (excluding winter). Large interannual variability was observed, with some years showing near background aerosol optical depth (AOD) levels (<0.1 at 500 nm) while 2004 and 2005 had August monthly means similar in magnitude to peak months at major tropical biomass burning regions. Single scattering albedo (w 0 ; 440 nm) at the boreal forest site ranged from $0.91 to 0.99 with an average of $0.96 for observations in 2004 and 2005. This suggests a significant amount of smoldering combustion of woody fuels and peat/soil layers that would result in relatively low black carbon mass fractions for smoke particles. The fine mode particle volume median radius during the heavy burning years was quite large, averaging $0.17 mm at AOD(440 nm) = 0.1 and increasing to $0.25 mm at AOD(440 nm) = 3.0. This large particle size for biomass burning aerosols results in a greater relative scattering component of extinction and, therefore, also contributes to higher w 0 . Additionally, monitoring at an Arctic Ocean coastal site (Barrow, Alaska) suggested transport of smoke to the Arctic in summer resulting in individual events with much higher AOD than that occurring during typical spring Arctic haze. However, the springtime mean AOD(500 nm) is higher during late March through late May ($0.150) than during summer months ($0.085) at Barrow partly due to very few days with low background AOD levels in spring compared with many days with clean background conditions in summer.
[1] High aerosol loading over the northern Indian subcontinent can result in poor air quality leading to human health consequences and climate perturbations. The international 2008 TIGERZ experiment intensive operational period (IOP) was conducted in the Indo-Gangetic Plain (IGP) around the industrial city of Kanpur (26.51°N, 80.23°E), India, during the premonsoon (April-June). Aerosol Robotic Network (AERONET) Sun photometers performed frequent measurements of aerosol properties at temporary sites distributed within an area covering ∼50 km 2 around Kanpur to characterize pollution and dust in a region where complex aerosol mixtures and semi-bright surface effects complicate satellite retrieval algorithms. TIGERZ IOP Sun photometers quantified aerosol optical depth (AOD) increases up to ∼0.10 within and downwind of the city, with urban emissions accounting for ∼10-20% of the IGP aerosol loading on deployment days. TIGERZ IOP area-averaged volume size distribution and single scattering albedo retrievals indicated spatially homogeneous, uniformly sized, spectrally absorbing pollution and dust particles. Aerosol absorption and size relationships were used to categorize black carbon and dust as dominant absorbers and to identify a third category in which both black carbon and dust dominate absorption. Moderate Resolution Imaging Spectroradiometer (MODIS) AOD retrievals with the lowest quality assurance (QA ≥ 0) flags were biased high with respect to TIGERZ IOP area-averaged measurements. MODIS AOD retrievals with QA ≥ 0 had moderate correlation (R 2 = 0.52-0.69) with the Kanpur AERONET site, whereas retrievals with QA > 0 were limited in number. Mesoscale-distributed Sun photometers quantified temporal and spatial variability of aerosol properties, and these results were used to validate satellite retrievals.Citation: Giles, D. M., et al. (2011), Aerosol properties over the Indo-Gangetic Plain: A mesoscale perspective from the TIGERZ experiment,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.