A new type of composite concrete which can be called corundum-rubble concrete (CRC) was presented to improve the resistance of protective structure to the projectile impact. Comparative experiments were conducted between CRC and reinforced concrete, and a modified Taylor model was proposed to predict the penetration depth of CRC targets. Experimental results show that CRC is much higher than reinforced concrete in both strength and hardness and shows excellent resistance to the 0.125 m-diameter projectile impact. Theoretical analyses demonstrated that the modified Taylor model’s predicted results were in good agreement with the measured values.
Multilayered combination of protective structures is an important means of effectively weakening the explosive shockwave. On this basis, a "rigid-flexible-rigid" three-layer sealed structure was proposed in this paper and two models for the sealed structure were designed. Meanwhile, internal explosion tests of the two models were conducted. One model used foam concrete as the energy absorbing material and the other used dense sand. The comparisons between the test results and the computed results obtained from the formulae were made, and the test results agreed well with the computed results. Test results showed that both models had favorable energy-dissipating capacity, and the model that used foam concrete as the energy absorbing material had a superior energy-dissipating capacity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.