ABSTRACT:Nowadays, Landslide has been one of the most frequent and seriously widespread natural hazards all over the world. How landslides can be monitored and predicted is an urgent research topic of the international landslide research community. Particularly, there is a lack of high quality and updated landslide risk maps and guidelines that can be employed to better mitigate and prevent landslide disasters in many emerging regions, including China. This paper considers national and regional scale, and introduces the framework on combining the empirical and physical models for landslide evaluation. Firstly, landslide susceptibility in national scale is mapped based on empirical model, and indicates the hot-spot areas. Secondly, the physically based model can indicate the process of slope instability in the hot-spot areas. The result proves that the framework is a systematic method on landslide hazard monitoring and early warning. Li (1983-), male, doctor of engineering, main research interests-remote sensing data processing and disaster evaluation
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.