The self-assembled fabrication of large-area opal photonic crystals (PCs) that are free of cracks has remained a challenge which greatly limits the practicality of such a structure in optical and electronic applications. We report a new route in this paper for fabricating centimeter scale crack-free opal PC films in which the latex spheres are bound together through coordination bonds. The elimination of cracks in the PCs is attributed to the formation of metal ion-polymer latex spheres coordination complexes which is confirmed by shifts of the binding energy of the metal ion after the reaction. The coordination bonds enhance the interactions between the polymer latex spheres, which can neutralize the adhesion stress caused by the substrate and tension stress caused by the shrinkage of the latex spheres during the evaporation of solvent. The as-prepared PC films show a uniform diffraction color and excellent reflection properties, which proves that the formation of coordination bonds does not weaken the contrasts of the refractive index or the optical quality of the PCs. This facile fabrication of large area, crack-free opal PCs will offer significant insight into the preparation and applications of PCs in optical devices. † Electronic supplementary information (ESI): Characterization of the morphology and size dispersion of the latex spheres and optical microscopy images of the PCs. See
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.