This paper presents a study of micro-scale deformation of materials utilizing scanning electron microscopy (SEM) images and the digital image correlation (DIC) technique. A loading stage was integrated into the SEM imaging system. During the experiment, a series of SEM images of the specimen were acquired in situ. The DIC technique was then applied to these SEM images to calculate the displacement and strain field at the area of interest. Additional surface preparation may be needed in order to have an effective pattern for DIC analysis. Two applications are presented in the paper. Using small tensile specimens, the mechanical properties of electrodeposited nickel-based LIGA (an acronym from German words for lithography, electroplating, and moulding) specimens were characterized. In this case, the natural microstructural feature of the specimen surface was used directly as the pattern for DIC analysis. This method was also applied to study the strain concentration around the crack tip during the ductile fracture test of Al 6061-T651. In contrast to the previous case, the DIC patterns were generated by sputtering a thin layer of gold film on to the specimen surface through the copper mesh grid.
We analyze simple shear and torsion of single crystal copper by employing experiments, molecular dynamics simulations, and finite element simulations in order to focus on the kinematic responses and the apparent yield strengths at different length scales of the specimens. In order to compare torsion with simple shear, the specimens were designed to be of similar size. To accomplish this, the ratio of the cylinder circumference to the axial gage length in torsion equaled the ratio of the length to height of the simple shear specimens (0.43). With the [110] crystallographic direction parallel to the rotational axis of the specimen, we observed a deformation wave of material that oscillated around the specimen in torsion and through the length of the specimen in simple shear. In torsion, the ratio of the wave amplitude divided by cylinder circumference ranged from 0.02–0.07 for the three different methods of analysis: experiments, molecular dynamics simulations, and finite element simulations. In simple shear, the ratio of the deformation wave amplitude divided by the specimen length and the corresponding values predicted by the molecular dynamics and finite element simulations (simple shear experiments were not performed) ranged from 0.23–0.26. Although each different analysis method gave similar results for each type boundary condition, the simple shear case gave approximately five times more amplitude than torsion. We attributed this observation to the plastic spin behaving differently as the simple shear case constrained the dislocation activity to planar double slip, but the torsion specimen experienced quadruple slip. The finite element simulations showed a clear relation with the plastic spin and the oscillation of the material wave. As for the yield stress in simple shear, a size scale dependence was found regarding two different size atomistic simulations for copper (332 atoms and 23628 atoms). We extrapolated the atomistic yield stresses to the order of a centimeter, and these comparisons were close to experimental data in the literature and the present study.
Abstract.A series of titanium complexes bearing substituted diphenolate ligands (RCH(phenolate) 2 , where R = H, CH 3 ,2, was synthesized and studied as catalysts for the ring opening polymerization of L-lactide and ε-caprolactone. Ligands were designed to probe the role of chelate effect and steric effect in the catalytic performance. From the structure of triphenolate (with one extra coordination site than diphenolate ligand) Ti complex, TriOTiO i Pr 2 , we found no additional chelation to influence the catalytic activity of Ti complexes. It was found that bulky aryl groups in the diphenolate ligands decreased the rate of polymerization most. We conclude that steric effect is the most controlling factor in these polymerization reactions by using Ti complexes bearing diphenolate ligands as catalysts since it is responsible for the exclusion of needed space for incoming monomer by the bulky substituents on the catalyst.
Chromium (Cr) films are widely used as interlayers to promote the adhesion of copper or gold to substrates. However, the Cr interlayer usually fractures at lower strains than the ductile metal films. In this paper, the cracking and buckling behavior of Cr films on polyethylene terephthalate (PET) substrates were studied in situ under tensile loading with the Atomic Force Microscope (AFM) and optical microscope imaging. Cr films with three nominal thicknesses of 15, 70 and 140 nm were studied. The depth and width of the cracks, as well as the height and width of the buckles, were measured from AFM images acquired at incremental loading steps. The buckle shapes at different strain levels were carefully examined using AFM line profile. It was found that at large strain levels the measured buckle shapes usually deviated from the elastic buckling mode shapes. Further in situ AFM imaging of the buckles at a smaller scan area revealed that in some cases the buckles were cracked at the apex. These in situ nanoscale measurements provided experimental observations and data for further model development and more accurate measurement of the interfacial fracture energy at the Cr-PET interface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.