This paper focuses on 3-dimensional non-destructive characterization of the morphologies of integral-skin cellular polymeric composites using X-ray Microtomography. Rapid Rotational Foam Molding (RRFM) is a polymer processing technology that is capable of creating composites with intricate shapes that have a foamed core surrounded by an integral solid skin layer (similar to the structure of a bone). The analyzed specimens were extracted from composites processed in RRFM having a solid skin made of polypropylene (PP) grades combined with foamed cores made of both polyethylene (PE) and PP grades by implementing a suitable chemical blowing agent (CBA) in extrusion. The resulting cellular structures pertaining to the foamed core and the near-skin area were visualized and their morphological quality was evaluated in terms of cell size distribution and cell density. The stress-strain behavior and 3-dimensional structural changes were monitored and characterized with in-situ compression testing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.